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KRYLOV–SCHUR-TYPE RESTARTS FOR THE TWO-SIDED
ARNOLDI METHOD∗

IAN N. ZWAAN† AND MICHIEL E. HOCHSTENBACH†

Abstract. We consider the two-sided Arnoldi method and propose a two-sided Krylov–Schur-
type restarting method. We discuss the restart for standard Rayleigh–Ritz extraction as well as
harmonic Rayleigh–Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz
vectors in the context of oblique projections and present generalizations of, e.g., the Bauer–Fike
theorem and Saad’s theorem. Applications of the two-sided Krylov–Schur method include the si-
multaneous computation of left and right eigenvectors and the computation of eigenvalue condition
numbers. We demonstrate how the method can be used to find the least sensitive eigenvalues of
a nonnormal matrix and how to approximate pseudospectra by using left and right shift-invariant
subspaces. The results demonstrate that significant improvements in quality can be obtained over
approximations with the (one-sided) Krylov–Schur method.
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1. Introduction. The two-sided Lanczos algorithm (cf., e.g., [16, sect. 6.4]) is an
important alternative to the Arnoldi method (cf., e.g., [16, sect. 6.2]) for nonnormal
matrices. The former uses short three-term recurrences at the expense of double
the number of matrix-vector multiplications. But if one wants the eigenvectors, then
either the bases must be stored, or they must be computed in a second run. This means
that either the storage needed for two-sided Lanczos becomes roughly twice that of
Arnoldi, or the number of matrix-vector multiplications doubles again. Moreover, in
practice re-biorthogonalization is often necessary because of the loss of biorthogonality
in finite precision arithmetic. The accuracy and stability of the computed bases may
be improved by using the two-sided Arnoldi method, proposed by Ruhe [14], to replace
biorthonormal by orthonormal bases. In this paper, we propose an efficient restarting
technique for two-sided Arnoldi, inspired by the Krylov–Schur algorithm [20, 21]. We
also investigate perturbation and convergence properties using error bounds for Ritz
values and Ritz vectors in the context of oblique projections.

There already are generalizations of the Krylov–Schur method, for example, for
Hamiltonian matrices and the product eigenproblem by Kressner [10, 11], as well as
a block method for symmetric matrices by Zhou and Saad [27], a version for unitary
eigenproblems by David and Watkins [5], and a method for the truncated SVD by
Stoll [23]. Jaimoukha and Kasenally [7] present a restarted two-sided Krylov method
for model order reduction; however, their method uses projections to remove unstable
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elements without changing the initial vectors. Instead, we are interested in arbitrary
exterior eigenvalues of general nonnormal matrices and allow our method to implicitly
modify the initial vectors.

Applications that may benefit from two-sided Krylov–Schur include those where
the condition number of eigenvalues is important and those where both the left and
right eigenvectors are desired. In particular, we use two-sided Krylov–Schur to find
eigenvalues with the lowest condition numbers and to approximate pseudospectra.
The former may be useful to compute the least sensitive eigenvalues of parameterized
matrices, or the most reliable eigenvalues of matrices containing uncertain data. The
latter application can provide insight into the (worst-case) behavior of eigenvalues
under perturbations. Our contribution is a new type of approximation using two
shift-invariant subspaces.

The rest of this paper is organized as follows. First we review Stewart’s Krylov–
Schur method in section 2. Then we introduce a new two-sided Krylov–Schur method
in section 3 and its harmonic counterpart in section 4. Section 5 explores the rela-
tion between two-sided Arnoldi and two-sided Lanczos. The focus of section 6 is on
perturbation and convergence theory, and that of section 7 on distance properties.
Finally, sections 8 and 9 contain the numerical experiments and conclusions.

Throughout this paper ‖ · ‖ = ‖ · ‖2 denotes the Euclidean norm, unless stated
otherwise, ‖ · ‖F is the Frobenius norm, and σmin(M) is the smallest singular value of
a general matrix M .

2. One-sided Krylov–Schur. The Krylov–Schur method by Stewart [20, 21]
combines the Arnoldi method with a restarting mechanism based on the Schur de-
composition. Let A be an n× n matrix and consider the Krylov subspace

(1) V` = K`(A,v) = span{v, Av, A2v, . . . , A`−1v},

where ` � n. It is well known that the Arnoldi method creates a basis V` for V`
satisfying the decomposition

(2) AV` = V`H` + v`+1h
∗
` = V`+1H `,

where Vk+1 = [V` v`+1] has orthonormal columns and H ` = [H`; h∗` ] is upper-
Hessenberg. When H ` is an arbitrary full-rank (`+1)×`, it is nevertheless possible to
transform the decomposition into the described upper-Hessenberg form [20, Thm. 2.2].
To perform a restart, compute the Schur decomposition

H` = QSQ∗,

where Q is unitary and S is upper triangular, and define V̂` = V`Q and ĥ` = Q∗h`;
then

AV̂` = V̂`S + v`+1ĥ
∗
` .

Partition the above decomposition as

A
[
V̂1 V̂2

]
=
[
V̂1 V̂2

] [S11 S12

0 S22

]
+ v`+1

[
ĥ∗1 ĥ∗2

]
,

where it may be assumed without loss of generality that the desired eigenvalues of H`

are along the diagonal of S11. Lastly, truncate to obtain

AV̂1 = V̂1S11 + v`+1ĥ
∗
1.
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Algorithm 1. One-sided Krylov–Schur [20].

Input: A ∈ Cn×n, starting vector v1, minimum and maximum dimensions m and `,
tolerance tol.
Output: Vm+1 and Hm such that ‖AVm − VmHm‖ ≤ tol.
1. for number of restarts do
2. Expand the Krylov decomposition to AV` = V`H` + v`+1h

∗
` .

3. Compute H` = QSQ∗, and partition Q = [Q1Q2] and S =
[
S11 S12

S22

]
.

4. Set Vm = V`Q1, Hm = S11, and hm = Q∗1h`.
5. if ‖hm‖ ≤ tol then break
6. end

We summarize the one-sided Krylov–Schur method in Algorithm 1.
The Krylov–Schur method extracts approximations to eigenvalues and eigenvec-

tors using the standard Galerkin condition

AV`c− θV`c ⊥ V`.

However, it is also possible to extract eigenvalues by choosing a different test subspace
U` and imposing the modified Galerkin condition

AV`c− θV`c ⊥ U`.

In this case a Krylov–Schur-type restart is more elaborate [21], but allows, for instance,
restarts with harmonic Ritz value extraction. The following two sections show how
the one-sided Krylov–Schur restart can be modified to restart either two-sided Arnoldi
or harmonic two-sided Arnoldi.

3. Two-sided Krylov–Schur. In this section we derive the two-sided Krylov–
Schur method. Assume A is a nonnormal n×n matrix, and consider the right Krylov
subspace in (1) together with the left Krylov subspace

W` = K`(A∗,w) = span{w, A∗w, (A∗)2
w, . . . , (A∗)`−1

w}.

The two-sided Arnoldi method proposed by Ruhe [14], and later as a block method
by Cullum and Zhang [4], independently generates orthonormal bases for the right
search space V` and the left search space W`. This can be done by applying the
(one-sided) Arnoldi method twice. Let the generated bases be denoted by V` and W`,
respectively; then the following relations are satisfied:

AV` = V`H` + v`+1h
∗
` = V`+1H `,

A∗W` = W`K` + w`+1k
∗
` = W`+1K `,

(3)

where both V`+1 = [V` v`+1] and W`+1 = [W` w`+1] consist of orthonormal columns.
The next step is to extract approximate eigenvectors and eigenvalues using the two-
sided Rayleigh–Ritz method. For this purpose, the matrices H` and K` are modified
to be Rayleigh quotients of A and A∗, respectively. The Rayleigh quotient of a matrix
M is defined here as Y ∗MX for a full column rank matrix X with left inverse Y ∗ (cf.,
e.g., [19, p. 252]). Assuming W ∗` V` is nonsingular, let

H̃` = H` + (W ∗` V`)
−1W ∗` v`+1h

∗
` ,

K̃` = K` + (V ∗` W`)
−1V ∗` w`+1k

∗
`
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and

ṽ`+1 = (I − V`(W ∗` V`)−1W ∗` )v`+1,

w̃`+1 = (I −W`(V
∗
` W`)

−1V ∗` )w`+1.

Then it is possible to rewrite (3) as

AV` = V`H̃` + ṽ`+1h
∗
` ,

A∗W` = W`K̃` + w̃`+1k
∗
` .

(4)

Since ṽ`+1 is orthogonal to W` and w̃`+1 is orthogonal to V`, it follows that

H̃` = (W ∗` V`)
−1W ∗` AV`,

K̃` = (V ∗` W`)
−1V ∗` A

∗W`.
(5)

Because (W ∗` V`)
−1W ∗` and (V ∗` W`)

−1V ∗` are left inverses of V` andW`, respectively, we

recognize H̃` and K̃` as Rayleigh quotients of A and A∗. Furthermore, the eigenvalues
of H̃` and of K̃∗` satisfy the following proposition due to Cullum and Zhang [4].

Proposition 1. Using the previous definitions, H̃` and K̃∗` are similar if W ∗` V`
is nonsingular.

Proof. Since (V ∗` W`)
−∗ = (W ∗` V`)

−1, it is easy to deduce from (5) that

(W ∗` V`)H̃` = W ∗` AV` = K̃∗` (W ∗` V`).

If W ∗` V` is singular, then one can perform additional steps of the Krylov process
or remove vectors until W ∗j Vj is nonsingular for some j.

We are now ready to derive a new two-sided restarting approach inspired by
(one-sided) harmonic Krylov–Schur restarts [21]. Consider the Schur decompositions

H̃` = QSQ∗ and K̃` = ZTZ∗,

where the eigenvalues of H̃` and K̃` are ordered along the diagonals of S and T ,
respectively, and are such that sjj = t∗jj . If such a pairing cannot be found due to
roundoff errors, then an alternative is to sort sjj and t∗jj independently based on
some desirable quantity such as their distance to a target, the size of the real part,
etc. Substituting the above Krylov–Schur decompositions in (4) yields

AV` = V`QSQ
∗ + ṽ`+1h

∗
` ,

A∗W` = W`ZTZ
∗ + w̃`+1k

∗
` .

Let V̂` = V`Q, Ŵ` = W`Z, h̃` = Q∗h`, and k̃` = Z∗k`, so that

AV̂` = V̂`S + ṽ`+1h̃
∗
` ,

A∗Ŵ` = Ŵ`T + w̃`+1k̃
∗
` ,

(6)

and in partitioned form

A
[
V̂1 V̂2

]
=
[
V̂1 V̂2

] [S11 S12

0 S22

]
+ ṽ`+1

[
h̃∗1 h̃∗2

]
,

A∗
[
Ŵ1 Ŵ2

]
=
[
Ŵ1 Ŵ2

] [T11 T12

0 T22

]
+ w̃`+1

[
k̃∗1 k̃∗2

]
.

(7)
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We can now truncate the partitioned decompositions to

AV̂1 = V̂1S11 + ṽ`+1h̃
∗
1,

A∗Ŵ1 = Ŵ1T11 + w̃`+1k̃
∗
1.

(8)

The vector ṽ`+1 is in general not orthogonal to V̂1, and w̃`+1 is not orthogonal to Ŵ1.
This problem can be remedied by computing

AV̂1 = V̂1Ĥ + v̂`+1ĥ
∗
1,

A∗Ŵ1 = Ŵ1K̂ + ŵ`+1k̂
∗
1,

(9)

where [V̂1 v̂`+1] and [Ŵ1 ŵ`+1] have orthonormal columns, and

Ĥ = S11 + (V̂ ∗1 ṽ`+1)h̃∗1,

K̂ = T11 + (Ŵ ∗1 w̃`+1)k̃∗1,

v̂`+1 = ‖(I − V̂1V̂
∗
1 )ṽ`+1‖−1(I − V̂1V̂

∗
1 )ṽ`+1,

ŵ`+1 = ‖(I − Ŵ1Ŵ
∗
1 )w̃`+1‖−1(I − Ŵ1Ŵ

∗
1 )w̃`+1,

ĥ1 = ‖(I − V̂1V̂
∗
1 )ṽ`+1‖ h̃1,

k̂1 = ‖(I − Ŵ1Ŵ
∗
1 )w̃`+1‖ k̃1.

From here, the search spaces spanned by V̂1 and Ŵ1 can be expanded independently
using the (one-sided) Arnoldi method. Below in Algorithm 2 we summarize the two-
sided Krylov–Schur method for the computation of approximate right and left invari-
ant subspaces.

Ordinarily, the oblique projections in steps 3 and 4 of Algorithm 2 must be re-
peated at least once in practice [22, sect. 7], which can be seen as the oblique analogue
of reorthogonalization. Step 12 requires extra attention as well, since properly mea-
suring the convergence in two-sided Krylov–Schur is more complex than in one-sided
Krylov–Schur. Luckily, we can rely on the work of Kahan, Parlett, and Jiang [9],
who investigate the convergence of two-sided Lanczos and derive a set of termination
criteria. We describe some of their results below.

For two unit vectors v and w with w∗v 6= 0, define the two-sided Rayleigh
quotient

ρ = ρ(v,w∗) =
w∗Av
w∗v

and the right and left residuals

r = (A− ρI)v and s = (A− ρI)∗w;

then the partial derivatives of ρ are

∂vρ(v,w∗) =
s∗

w∗v
and ∂w∗ρ(v,w∗) =

r

w∗v
.

Consequently, ρ should not be used as an approximate eigenvalue unless the value of
max{‖s‖, ‖r‖}/|w∗v| is sufficiently small relative to ρ. An additional result shows
that for an eigenvalue λ near ρ, the bound

|λ− ρ| ≤ κ(λ)‖E‖+O(‖E‖2)
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Algorithm 2. Two-sided Krylov–Schur.

Input: Nonnormal A ∈ Cn×n, starting vectors v1 and w1, minimum and maximum
dimensions m and `.
Output: Vm+1, Wm+1, Hm, and Km such that AVm = Vm+1Hm ≈ VmHm and
A∗Wm = Wm+1Km ≈WmKm.
1. for number of restarts do
2. Expand the Krylov decompositions to

AV` = V`H` + v`+1h
∗
` , A∗W` = W`K` + w`+1k

∗
` ,

using the Arnoldi process, and update M` = W ∗` V`.
3. Compute H` = H` +M−1

` W ∗` v`+1h
∗
` and v`+1 = v`+1 − V`M−1

` W ∗` v`+1.
4. Compute K` = K` +M−∗` V ∗` w`+1k

∗
` and w`+1 = w`+1 −W`M

−∗
` V ∗` w`+1.

5. Compute the Schur decompositions H` = QSQ∗ and K` = ZTZ∗.
6. Partition Q, S, Z, and T as in (7).
7. Set Vm = V`Q1, Hm = S11, hm = Q∗1b`.
8. Set Wm = W`Z1, Km = T11, km = Z∗1c`.
9. Set Mm = Z∗1M`Q1.

10. Set Hm = Hm + (V ∗mv`+1)h∗m, vm+1 = (I − VmV ∗m)v`+1,
hm = ‖vm+1‖hm, vm+1 = vm+1/‖vm+1‖.

11. Set Km = Km + (W ∗mw`+1)k∗m, wm+1 = (I −WmW
∗
m)w`+1,

km = ‖wm+1‖km, wm+1 = wm+1/‖wm+1‖.
12. if converged (cf. (10)) then break
13. end

holds [9, sect. 5], where ‖E‖ ≤ max{‖r‖, ‖s‖} and κ(λ) is the condition number of λ.
While κ(λ) is unknown in practice, it can be approximated with |w∗v|−1; see, e.g.,
Theorem 3 and [9, sect. 8].

In the context of two-sided Krylov–Schur we compute

H̃`C = CΘ (with Θ = diag(θ1, . . . , θ`) and ‖cj‖ = 1),

K̃`D = DΓ (with Γ = diag(γ1, . . . , γ`) and ‖dj‖ = 1),

where Θ = Γ∗ in exact arithmetic, and let the right and left Ritz vectors be vj = V`cj
and wj = W`dj . Then the Rayleigh quotients ρj = ρ(vj ,wj) can be shown to equal
the Ritz values θj = γj , so that the residuals satisfy

rj = ‖(A− ρjI)vj‖ = ‖(A− θjI)vj‖ = ‖ṽ`+1‖ |h∗`cj |,
sj = ‖(A− ρjI)∗wj‖ = ‖(A− γjI)∗wj‖ = ‖w̃`+1‖ |k∗`dj |.

Using the sensitivities κj = |w∗jvj |−1, we terminate, for example, if the relative error

(10)
κj
|ρj |

max{‖rj‖, ‖sj‖}

is sufficiently small for the desired value(s) of ρj . In our tests using finite precision

arithmetic, it was advantageous to use the right eigenvectors of both H̃` and K̃`

instead of using the left and right eigenvectors of only one of the two. In some cases
it may also be numerically preferable to use the Rayleigh quotients ρj in place of the
Ritz values θj and γj [17, sect. 4].
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In this section we have discussed a two-sided version of the Krylov–Schur algo-
rithm in addition to a suitable stopping criterion. In the subsequent section we focus
on a two-sided Krylov–Schur restart with harmonic eigenvalue extraction.

4. Harmonic two-sided Krylov–Schur. The eigenvalue extraction from the
previous section corresponds to imposing the Galerkin conditions

AV`c− θV`c ⊥ W`,

A∗W`d− ηW`d ⊥ V`.
(11)

Suppose one is interested in interior eigenvalues near a target τ not equal to an
eigenvalue. These eigenvalues are exterior eigenvalues of the shifted and inverted
matrix (A − τI)−1; hence, it makes sense for the extraction to impose the Petrov–
Galerkin conditions

(A− τI)−1v − (θ − τ)−1v ⊥ U1,

(A− τI)−∗w − (η − τ)−∗w ⊥ U2

for certain test spaces U1 and U2; see also [6, sect. 3.2]. It is straightforward to
show that the choice v = V`c, w = W`d, U1 = (A − τI)∗W`, and U2 = (A − τI)V`
is equivalent to (11). For harmonic two-sided Rayleigh–Ritz one can take the test
spaces

U1 = (A− τI)∗(A− τI)∗W`,

U2 = (A− τI)(A− τI)V`

to obtain the equivalent conditions

(A− θI)v ⊥ (A− τI)∗W`,

(A− ηI)∗w ⊥ (A− τI)V`

after some manipulation. The former conditions lead to the generalized eigenvalue
problems

W ∗` (A− τI)AV`c = θW ∗` (A− τI)V`c,

V ∗` (A− τI)∗A∗W`d = ηV ∗` (A− τI)∗W`d.

Since these are two conjugated generalized eigenvalue problems, it follows that they
are satisfied by ` quadruples (θ, η, c,d) with η = θ. If W ∗` (A − τI)V` is nonsingular,
we receive the equivalent eigenvalue problems

(W ∗` (A− τI)V`)
−1W ∗` (A− τI)AV`c = θc,

(V ∗` (A− τI)∗W`)
−1V ∗` (A− τI)∗A∗W`d = θd.

Substituting the Arnoldi decompositions from (3) produces

H̃`c = θc and K̃`d = θd,

where H̃` and K̃` are rank-1 updates of H` and K`, defined by

H̃` = H` + ((K ` − τI)∗W ∗`+1V`)
−1(K ` − τI)∗W ∗`+1v`+1h

∗
` ,

K̃` = K` + ((H ` − τI)∗V ∗`+1W`)
−1(H ` − τI)∗V ∗`+1w`+1k

∗
` ,
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and I is the identity matrix with an additional zero bottom row. Next, define

ṽ`+1 = (I − V`((K ` − τI)∗W ∗`+1V`)
−1(K ` − τI)∗W ∗`+1)v`+1,

w̃`+1 = (I −W`((H ` − τI)∗V ∗`+1W`)
−1(H ` − τI)∗V ∗`+1)w`+1,

so that

AV` = V`H̃` + ṽ`+1h
∗
` ,

A∗W` = W`K̃` + w̃`+1k
∗
` ,

and H̃` and K̃` are the Rayleigh quotients

H̃` = (W ∗` (A− τI)V`)
−1W ∗` (A− τI)AV`

= ((K ` − τI)∗W ∗`+1V`)
−1(K ` − τI)∗W ∗`+1AV`,

K̃` = (V ∗` (A− τI)∗W`)
−1V ∗` (A− τI)∗A∗W`

= ((H ` − τI)∗V ∗`+1W`)
−1(H ` − τI)∗V ∗`+1A

∗W`.

(12)

As in Proposition 1, the eigenvalues of the H̃` and K̃∗` from this section coincide.

Proposition 2. If W ∗` (A − τI)V` is nonsingular, then H̃` and K̃∗` in (12) are
similar.

Proof. The proof is comparable to the proof of Proposition 1, but with W` re-
placed by (A− τI)∗W`. From (12) and A(A− τI) = (A− τI)A, it follows that

(W ∗` (A− τI)V`)H̃` = W ∗` (A− τI)AV` = K̃∗` (W ∗` (A− τI)∗V`).

At this point we can compute Schur decompositions of H̃` and K̃` and continue
analogously to the previous section. Algorithm 3 summarizes the harmonic two-sided
Krylov–Schur method for the determination of approximate right and left invariant
subspaces.

Notice that in step 3 of the algorithm we attempt to improve the accuracy by
using a QR factorization of K `−τI, so that we essentially work with the orthonormal
basis W`+1Q instead of W`+1(K − τI). The approach of step 4 is comparable, and
M`,`+1 and M`+1,` denote the `× (`+ 1) and (`+ 1)× ` leading principal submatrices
of M`+1, respectively. In step 14 the same stopping conditions from section 3 can be
used; however, in this case, using the Rayleigh quotients ρj in place of the Ritz values
θj and γj is recommended (cf. [17, sect. 4]).

We have now seen the regular and harmonic two-sided Krylov–Schur algorithms.
In the following section we discuss the relation between these two algorithms and the
two-sided Lanczos algorithm.

5. Relation with two-sided Lanczos. As discussed in the introduction, the
two-sided Lanczos method and two-sided Arnoldi are closely related. Specifically, if
(3) is in upper-Hessenberg form with h` = ‖h`‖e` and k` = ‖k`‖e`, and W ∗` V` is

nonsingular, then it can be verified that H̃ and K̃ in (4) are also upper-Hessenberg.
Now let W ∗` V` = LU be a decomposition into lower and upper triangular factors,

and define the biorthonormal bases V̂` = V U−1 and Ŵ` = WL−∗. Furthermore, let
T = UH̃`U

−1; then from the proof of Proposition 1 it follows that

T = UH̃`U
−1 = L−1LUH̃`U

−1 = L−1K̃∗`LUU
−1 = (L∗K̃L−∗)∗.
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Algorithm 3. Harmonic two-sided Krylov–Schur.

Input: Nonnormal A ∈ Cn×n, starting vectors v1 and w1, minimum and maximum
dimensions m and `, target τ .
Output: Vm+1, Wm+1, Hm, and Km such that AVm = Vm+1Hm ≈ VmHm and
A∗Wm = Wm+1Km ≈WmKm.
1. for number of restarts do
2. Expand the Krylov decompositions to

AV` = V`H` + v`+1h
∗
` , A∗W` = W`K` + w`+1k

∗
` ,

using the Arnoldi process, and update M`+1 = W ∗`+1V`+1.
3. Compute QR = K ` − τI, and set p = (Q∗M`+1,`)

−1Q∗M`+1e`+1.
4. Compute QR = H ` − τI, and set q = (Q∗M∗`,`+1)−1Q∗M∗`+1e`+1.
5. Let H` = H` + ph∗` and v`+1 = v`+1 − V`p.
6. Let K` = K` + qk∗` and w`+1 = w`+1 −W`q.
7. Compute the Schur decompositions H` = QSQ∗ and K` = ZTZ∗.
8. Partition Q, S, Z, and T as in (7).
9. Set Vm = V`Q1, Hm = S11, hm = Q∗1b`.

10. Set Wm = W`Z1, Km = T11, km = Z∗1c`.
11. Set Mm = Z∗1M`Q1.
12. Set Hm = Hm + (V ∗mv`+1)h∗m, vm+1 = (I − VmV ∗m)v`+1,

hm = ‖vm+1‖hm, vm+1 = vm+1/‖vm+1‖.
13. Set Km = Km + (W ∗mw`+1)k∗m, wm+1 = (I −WmW

∗
m)w`+1,

km = ‖wm+1‖km, wm+1 = wm+1/‖wm+1‖.
14. if converged (see the discussion after Algorithm 2) then break
15. end

Using this identity, (4) can be written as

AV̂` = V̂`T + ṽ`+1h
∗
`U
−1,

A∗Ŵ` = Ŵ`T
∗ + w̃`+1k

∗
`L
−∗,

(13)

where T is tridiagonal since both T = UH̃U−1 and T ∗ = L∗K̃L−∗ are upper-
Hessenberg. The decompositions in (13) coincide with two-sided Lanczos. Assume for
harmonic two-sided Arnoldi that W ∗` (A−τI)V` is nonsingular, let W ∗` (A−τI)V` = LU

be a decomposition into lower and upper triangular factors, and define V̂` = V`U
−1

and Ŵ` = (A − τI)∗W`L
−∗. Then Proposition 2 can be utilized to show that

T = UH̃U−1 = (L∗K̃L−∗)∗ is tridiagonal.
To summarize, two-sided Lanczos and two-sided Arnoldi generate bases for the

same subspaces, although two-sided Lanczos uses biorthonormal bases and short re-
cursions, while two-sided Arnoldi uses orthonormal bases and (full) reorthogonaliza-
tion. The option to use short recursions with two-sided Lanczos makes it a computa-
tionally appealing method in situations when the computational cost or the memory
requirements for (full) reorthogonalization would be prohibitive. On the other hand,
using biorthonormal bases without (full) reorthogonalization may lead to numerical
stability issues. Methods that were developed to handle these issues include look-
ahead techniques, selective reorthogonalization, and the detection of spurious Ritz
values; see, for instance, Ruhe [15, sect. 4.4.4]. However, increases in memory capac-
ity and computational power of computer hardware have diminished the necessity of
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such methods, and the modern approach is to favor (full) reorthogonalization when
stability and accuracy are crucial. Even though two-sided Lanczos can be imple-
mented with full re-biorthogonalization, Stewart [22] provides convincing reasons for
preferring orthogonal bases. For example, orthogonal bases tend to be less sensitive to
perturbations than biorthogonal bases. Furthermore, if X and Y are biorthonormal,
then the computation of

(I −XY ∗)a

for some vector a may incur a relative error up to γ‖XY ∗‖ε. Here, ε is the machine
epsilon, and γ is a constant that depends on the accuracy ofX and Y . The error bound
implies that even if re-biorthogonalization is used, accuracy may be lost, especially if
‖XY ∗‖ is large and if errors accumulate.

Two-sided Krylov–Schur uses orthonormal bases and applies only orthonormal
transformations to the bases. Some of the accuracy and stability issues are avoided as
a result, especially if two-sided Krylov–Schur is implemented with full reorthogonal-
ization. Unfortunately, we are not entirely clear of all stability issues associated with
oblique projections, or more specifically, the terms (W ∗` V`)

−1 for standard extraction
and (W ∗` (A− τI)V`)

−1 for harmonic extraction. The vectors ṽ`+1 and w̃`+1 and the

matrices H̃` and K̃` will depend on the previous matrix inverses, and therefore the
computed Schur decompositions do, too.

As it turns out, it is possible to avoid the explicit use of (W ∗` V`)
−1 and improve the

accuracy of the computations in Algorithms 2 and 3. For simplicity we consider only
two-sided Rayleigh–Ritz extraction and note that the results can be adapted to two-
sided harmonic Ritz. Suppose, for the moment, that we are given the orthonormal
matrices Q and Z. The objective is to obtain the decompositions in (9) from (6)

without using (W ∗` V`)
−1. The update V̂1 = V`Q1 can clearly be computed without

using a matrix inverse; now

AV̂1 = V̂1S11 + ṽ`+1h̃
∗
1

= V̂1Q
∗
1H̃`Q1 + (I − V`(W ∗` V`)−1W ∗` )v`+1h

∗
`Q1

= V̂1Q
∗
1H`Q1 + V`Q1Q

∗
1(W ∗` V`)

−1W ∗` v`+1h
∗
`Q1 + (I − V`(W ∗` V`)−1W ∗` )v`+1h

∗
`Q1

= V̂1Q
∗
1H`Q1 + (I − V`Q2Q

∗
2(W ∗` V`)

−1W ∗` )v`+1h
∗
`Q1.

It is straightforward to verify that Ĥ = Q∗1H`Q1 and

v̂`+1ĥ
∗
1 = (I − V`Q2Q

∗
2(W ∗` V`)

−1W ∗` )v`+1h
∗
`Q1.

On the other hand,

AV`Q1 − V`Q1Q
∗
1H`Q1 = V`Q2Q

∗
2H`Q1 + v`+1h

∗
`Q1

= [V` v`+1]

[
Q2

1

][
Q∗2

1

][
H`

h∗`

]
Q1.

It follows that it is possible to determine v̂`+1ĥ
∗
1 by computing a rank-1 approximation

ab∗ of [
Q∗2

1

][
H`

h∗`

]
Q1,
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with ‖a‖ = 1, and setting ĥ1 = b and

v̂`+1 = [V` v`+1]

[
Q2

1

]
a.

An alternative is to use the relation

(I − V`Q2Q
∗
2(W ∗` V`)

−1W ∗` )v`+1‖h∗`Q1‖2 = (V`Q2Q
∗
2H`Q1 + v`+1h

∗
`Q1)Q∗1h`

to determine v̂`+1, which is particularly appealing from a computational point of
view. In our tests we found that the latter approach was faster and provided the
best numerical performance. The vector ṽ`+1 is no longer needed with the above
approaches, and its computation can be omitted. To summarize, the inverse of W ∗` V`
can be bypassed once Q is known.

Computing Q without using (W ∗` V`)
−1 is the remaining step. It is possible to

avoid the explicit use of the inverse with the QZ decomposition

W ∗` AV` = PSαQ
∗ and W ∗` V` = PSβQ

∗

of the matrix pencil (W ∗` AV`,W
∗
` V`). Here P and Q are orthonormal, Sα and Sβ

are upper triangular, and S = S−1
β Sα. The QZ decomposition can be reordered if

necessary. In our tests we found that the QZ approach did not improve the accuracy
with sufficient significance and reliability to justify the increased computational cost.

In this section we have investigated the relation between two-sided Lanczos and
two-sided Krylov–Schur and argued how most of the problems with the former are
solved by a proper implementation of the latter.

6. Error bounds for Ritz values and Ritz vectors. In previous sections
we have discussed the computation of Ritz values, Ritz vectors, and their harmonic
counterparts. In this section we investigate the convergence of Ritz values and Ritz
vectors with respect to the convergence of the search space to an invariant subspace.
We will first focus on the convergence of Ritz values and address the convergence of
the Ritz vectors later.

To investigate the convergence of a Ritz value θ to an eigenvalue of A, we could
invoke, for instance, the Bauer–Fike theorem (cf., e.g., [16, Thm. 3.6]). The Bauer–
Fike theorem is a key result in perturbation theory, and below we present a new
two-sided version.

Theorem 3 (two-sided Bauer–Fike). Suppose that A is diagonalizable such that

A = XΛX−1.

Let (θ,v,w) be an approximate eigentriplet of A with ‖v‖ = ‖w‖ = 1, and define the
residuals

r = Av − θv and s∗ = w∗A− θw∗.
Assume w∗v 6= 0 and define κθ = |w∗v|−1. If the condition number of X is denoted
by κ(X), then there exists an eigenvalue λ of A such that

|λ− θ| ≤
√
κ(X)κθ ‖r‖ ‖s‖.

Proof. If θ is an eigenvalue of A, the result is clear. Otherwise A−θI is nonsingular
and

|w∗v| = |s∗(A− θI)−2r| = |s∗X(Λ− θI)−2X−1r| ≤ κ(X) ‖r‖ ‖s‖ ‖(Λ− θI)−2‖.
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Rearranging the terms gives

min
µ∈Λ(A)

|µ− θ|2 ≤ κ(X)κθ ‖r‖ ‖s‖.

In particular, if max{‖r‖, ‖s‖} → 0, then θ converges to some eigenvalue λ of A,
and κθ converges to the condition number κ(λ) of λ. Theorem 3 can be used with
Ritz vectors v and w to match Ritz values to eigenvalues of A one at a time.

An alternate approach for studying the convergence of Ritz values is through
Elsner’s theorem [19, p. 38].

Theorem 4 (Elsner’s theorem [19]). Let the eigenvalues of B be λ1, . . . , λn, and
let the eigenvalues of B + E be θ1, . . . , θn. Then there is a permutation j1, . . . , jn of
the integers 1, . . . , n such that

|λi − θji | ≤ 4(‖B‖+ ‖B + E‖)1−1/n‖E‖1/n (i = 1, . . . , n).

Hence, if the eigenvalues of B are in the spectrum of A and the eigenvalues of
B + E are the computed Ritz values, then θj1 , . . . , θjn converge to λ1, . . . , λn when
‖E‖ → 0. An advantage of using Elsner’s theorem is that we can match multiple θ’s
to eigenvalues simultaneously.

At this point it is helpful to introduce notation that allows the uniform treatment
of the remainder of this section. Let

V =
[
V1 V2 V3

]
and W =

[
W1 W2 W3

]
be full-rank orthonormal matrices, and introduce the shorthand notation V1,2 and
W1,2 for the first two blocks of V and W , respectively. In two-sided Krylov–Schur,
the columns of V1 and W1 could, for instance, correspond either to the basis vectors
retained after truncation or to a subset thereof. The next step is to make V and W
biorthonormal, which is where the following proposition comes into play.

Proposition 5. If W ∗1 V1 and W ∗1,2V1,2 are nonsingular, then the 3× 3 block LU
decomposition of W ∗V is given by

L =

W
∗
1 V1

W ∗2 V1 W ∗2 (I − P1)V2

W ∗3 V1 W ∗3 (I − P1)V2 W ∗3 (I − P1,2)V3

 ,

U =

I (W ∗1 V1)−1W ∗1 V2 (W ∗1 V1)−1W ∗1 V3

I (W ∗2 (I − P1)V2)−1W ∗2 (I − P1)V3

I

 ,
where P1 = V1(W ∗1 V1)−1W ∗1 and P1,2 = V1,2(W ∗1,2V1,2)−1W ∗1,2.

Proof. Suppose for the moment that W ∗2 (I−P1)V2 is nonsingular so that U is well
defined. For most of the blocks it is straightforward to verify by direct computation
that LU = W ∗V . The only difficult block is

W ∗3 V3 = W ∗3 P1V3 +W ∗3 (I −P1)V2(W ∗2 (I −P1)V2)−1W ∗2 (I −P1)V3 +W ∗3 (I −P1,2)V3.

To show that equality holds, it suffices to show that P1,2 = Q, where Q is the projector
defined by

Q = P1 + (I − P1)V2(W ∗2 (I − P1)V2)−1W ∗2 (I − P1).
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From its definition we see that the range of Q must be a subset of the range of V1,2,
that is, R(Q) ⊂ R(V1,2), and likewise R(Q∗) ⊂ R(W1,2). Furthermore, notice that
QV1 = V1, QV2 = V2, Q∗W1 = W1, and Q∗W2 = W2. Since a projector is uniquely
defined by its column space and its row space, it follows from [22, Thm. 2.2] that
Q = P1,2.

To prove the ansatz that W ∗2 (I − P1)V2 is nonsingular, let L1,2 and U1,2 be the
upper-left 2× 2 blocks of L and U so that

det(W ∗1,2V1,2) = det(L1,2U1,2) = det(L1,2) det(U1,2)

= det(W ∗1 V1) det(W ∗2 (I − P1)V2) 6= 0.

Suppose that W ∗1 V1 and W ∗1,2V1,2 are nonsingular and that L and U are given by
Proposition 5; then the matrices defined by

Ṽ = V U−1 =
[
Ṽ1 Ṽ2 Ṽ3

]
and W̃ = WL−∗ =

[
W̃1 W̃2 W̃3

]
are biorthonormal. Furthermore,

Ṽ1 = V1, W̃ ∗1 = (W ∗1 V1)−1W ∗1 , I − V1(W ∗1 V1)−1W ∗1 = I − Ṽ1W̃
∗
1 ,

and

I − V1,2(W ∗1,2V1,2)−1W ∗1,2 = I − Ṽ1,2W̃
∗
1,2 = Ṽ3W̃

∗
3 .

Assume that

S = (W ∗1,2V1,2)−1W ∗1,2AV1,2 and T = (V ∗1,2W1,2)−1V ∗1,2A
∗W1,2

are upper triangular; then an argument similar to the one at the beginning of section 5
shows that

W̃ ∗1,2AṼ1,2 = U1,2SU
−1
1,2 = (L∗1,2TL

−∗
1,2)∗

is block diagonal, with

W̃ ∗1,2AṼ1,2 =

[
S11

S22

]

=

[
(W ∗1 V1)−1T ∗11(W ∗1 V1)

(W ∗2 (I − P1)V2)−1T ∗22(W ∗2 (I − P1)V2

]
.

Finally, we have the following definition and assume for the remainder of this section
that rank(X) ≤ rank(V1).

Definition 6. Let X be an invariant subspace of A such that AX ⊆ X , and
suppose that [XX⊥] is orthonormal, X is a basis of X , and B is such that AX =
XB. If the spectra of B and X∗⊥AX⊥ are disjoint, then (B,X) is called a simple
orthonormal eigenpair of A.

Using the new notation, we are ready to state a generalization of Jia and Stewart
[8, Thm. 4.1], which allows the application of Elsner’s theorem to two-sided Arnoldi.
The value δ can be interpreted as a measure of the angle between subspaces and will
be analyzed in Theorem 11 and Proposition 13.
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Theorem 7. Let (B,X) be a simple orthonormal eigenpair of A. Define Z =
W̃ ∗1X, and orthonormalize the columns of Z by setting

Z̃ = ZQ, where Q = (Z∗Z)−1/2.

Then there exists a matrix E satisfying

‖E‖ = ‖W̃ ∗1A(I − Ṽ1W̃
∗
1 )XQ‖

such that (Q−1BQ, Z̃) is an eigenpair of S11 − E. Furthermore, if δ = ‖(I −
Ṽ1W̃

∗
1 )X‖ < 1, then

‖E‖ ≤ ‖W̃ ∗1A‖
δ

1− δ .

Proof. For the first part of the proof we multiply AX = XB from the left by W̃ ∗1
and obtain

W̃ ∗1A(Ṽ1W̃
∗
1 + (I − Ṽ1W̃

∗
1 ))X = W̃ ∗1XB.

Since W̃ ∗1AṼ1 = S11, we can rearrange the terms to get

S11W̃
∗
1X − W̃ ∗1XB = −W̃ ∗1A(I − Ṽ1W̃

∗
1 )X,

which we use to define the residual

R = S11Z̃ − Z̃Q−1BQ = − W̃ ∗1A(I − Ṽ1W̃
∗
1 )XQ

and the perturbation matrix E = RZ̃∗. Then S11 − E satisfies

(S11 − E)Z̃ = Z̃Q−1BQ

and

‖E‖ = ‖R‖ = ‖W̃ ∗1A(I − Ṽ1W̃
∗
1 )XQ‖,

which concludes the first part of the proof. For the second part of the proof we use
the relation

‖Q‖ = σ−1
min(Z) = σ−1

min(Ṽ1W̃
∗
1X).

To compute the smallest singular value of Ṽ1W̃
∗
1X, observe that

1 ≤ min
‖z‖=1

(‖Ṽ1W̃
∗
1Xz‖+ ‖(I − Ṽ1W̃

∗
1 )Xz‖).

Therefore,

σmin(Ṽ1W̃
∗
1X) = min

‖z‖=1
‖Ṽ1W̃

∗
1Xz‖ ≥ 1− max

‖z‖=1
‖(I − Ṽ1W̃

∗
1 )Xz‖ = 1− δ,

and

‖E‖ ≤ ‖W̃ ∗1A‖ ‖(I − Ṽ1W̃
∗
1 )‖ ‖Q‖ ≤ ‖W̃ ∗1A‖

δ

1− δ .

The key insight from Theorem 7 is that, under mild conditions, there exists a
matrix E such that the eigenvalues of Z̃∗(S11 −E)Z̃ = Q−1BQ are eigenvalues of A.
By subsequently applying Theorem 4, the following corollary may be obtained.
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Corollary 8. Assume r = rank(X) = rank(V1), let the eigenvalues of B be
λ1, . . . , λr, and let the eigenvalues of S11 be θ1, . . . , θr. Then there are integers
j1, . . . , jr such that

|λi − θji | ≤ 4(2‖(W ∗1 V1)−1‖ ‖A‖+ ‖E‖)1−1/r‖E‖1/r (i = 1, . . . , r).

Hence, if ‖(W ∗1 V1)−1‖ is asymptotically uniformly bounded and ‖E‖ → 0, then
there are Ritz values that converge to eigenvalues of A. In practice, the assumption
on (W ∗1 V1)−1 means that the corollary cannot be applied to defective eigenvalues.

The next proof relates the separation between Ritz values and eigenvalues to the
convergence of the subspace V1 to the invariant subspace X of A. The proof uses the
following definition of the separation operator.

Definition 9. The separation between an n×n matrix N and an m×m matrix
M is defined by

sep(N,M) = min
‖Z‖=1

‖NZ − ZM‖.

For more information on the separation operator, see, for example, [19, p. 256].

Theorem 10. Let (B,X) be a simple orthonormal eigenpair of A; then

sep(Ṽ1S11W̃
∗
1 , B) ≤ ‖Ṽ1W̃

∗
1AṼ3W̃

∗
3X‖

‖Ṽ1W̃ ∗1X‖
.

Proof. Since AX = XB, we have that

W̃ ∗1,2AṼ W̃
∗X = W̃ ∗1,2XB.

Rearranging the terms gives

(14)

[
S11

S22

][
W̃ ∗1X

W̃ ∗2X

]
−
[
W̃ ∗1X

W̃ ∗2X

]
B = −

[
W̃ ∗1AṼ3W̃

∗
3X

W̃ ∗2AṼ3W̃
∗
3X

]
.

From the first block row we see that

S11W̃
∗
1X − W̃ ∗1XB = −W̃ ∗1AṼ3W̃

∗
3X,

and hence
(Ṽ1S11W̃

∗
1 )Ṽ1W̃

∗
1X − Ṽ1W̃

∗
1XB = −Ṽ1W̃

∗
1AṼ3W̃

∗
3X.

Using the definition of the separation operator, we can now derive the bound

sep(Ṽ1S11W̃
∗
1 , B)‖Ṽ1W̃

∗
1X‖ ≤ ‖Ṽ1W̃

∗
1AṼ3W̃

∗
3X‖,

which concludes the proof.

Theorem 10 tells us that the separation between Ṽ1S11W̃
∗
1 and B must go to zero

as the span of X becomes contained in the span of V1,2; this is true in particular if
V1 converges to X.

It is instructive to determine what can be said of ‖(I − P1)X‖ if it is known
that ‖(I − P1,2)X‖ → 0. Saad provides a bound in the case of Hermitian matrices;
see, for example, [16, Thm. 4.6]. Saad’s theorem was generalized by Stewart for
general matrices in [18]. In [6, Thm. 3] the theorem was further generalized to a
two-sided result, but using ‖[W̃2 W̃3]∗X‖ instead of ‖(I − P1)X‖, and restricted by
the assumption that X is a vector. We therefore state a new two-sided Saad-type
theorem.
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Theorem 11. Let (B,X) be a simple orthonormal eigenpair of A. If

sep(Ṽ2S22W̃
∗
2 , B) > 0,

then

‖(I − Ṽ1W̃
∗
1 )X‖ ≤ ‖Ṽ2W̃

∗
2AṼ3W̃

∗
3X‖

sep(Ṽ2S22W̃ ∗2 , B)
+ ‖Ṽ3W̃

∗
3X‖

≤
(

1 +
‖Ṽ2W̃

∗
2A‖

sep(Ṽ2S22W̃ ∗2 , B)

)
‖Ṽ3W̃

∗
3X‖.

Proof. From the second block row of (14) it follows that

S22W̃
∗
2X − W̃ ∗2XB = −W̃ ∗2AṼ3W̃

∗
3X.

Using the fact that Ṽ ∗2 W̃2 = I, we can write

(Ṽ2S22W̃
∗
2 )Ṽ2W̃

∗
2X − Ṽ2W̃

∗
2XB = −Ṽ2W̃

∗
2AṼ3W̃

∗
3X,

so that
sep(Ṽ2S22W̃

∗
2 , B)‖Ṽ2W̃

∗
2X‖ ≤ ‖Ṽ2W̃

∗
2AṼ3W̃

∗
3X‖.

Therefore, we acquire the bound

‖(I − Ṽ1W̃
∗
1 )X‖ = ‖Ṽ2W̃

∗
2X + Ṽ3W̃

∗
3X‖ ≤

‖Ṽ2W̃
∗
2AṼ3W̃

∗
3X‖

sep(Ṽ2S22W̃ ∗2 , B)
+ ‖Ṽ3W̃

∗
3X‖,

which concludes the proof.

If there exists a positive constant α such that

sep(Ṽ2S22W̃
∗
22, B) ≥ α > 0

as ‖(I − P1,2)X‖ → 0, then the bound

‖(I − P1)X‖ .
(

1 +
‖Ṽ2W̃

∗
2A‖
α

)
‖(I − P1,2)X‖

is asymptotically satisfied and ‖(I − P1)X‖ → 0 when ‖(I − P1,2)X‖ → 0. The
intuitive interpretation of the lower bound α is that there must be a gap between the
spectra of B and S22 as V1 and S11 converge.

Applying Theorems 7, 10, and 11 to two-sided Krylov–Schur yields the following
bounds.

Corollary 12. Suppose the relations in (7) are satisfied with V1 = V̂1, V2 = V̂2,

W1 = Ŵ1, and W2 = Ŵ2; then the bound in Theorem 7 can be written as

‖E‖ ≤ ‖P1‖ ‖k̃1‖ ‖(I − P1,2)XQ‖,
the bound in Theorem 10 as

sep(Ṽ1S11W̃
∗
1 , B) ≤ ‖P1‖ ‖k̃1‖

‖(I − P1,2)X‖
‖P1X‖

,

and the bound in Theorem 11 as

‖(I − P1)X‖ ≤
(

1 +
‖P1,2 − P1‖ ‖k̃2‖
sep(Ṽ2S22W̃ ∗2 , B)

)
‖(I − P1,2)X‖.
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The corollary shows that bounds of the form ‖ṼjW̃ ∗j ‖ ‖k̃j‖ are obtained instead

of ‖ṼjW̃ ∗j A‖ when two-sided Krylov–Schur is used. This is an attractive result since

‖k̃1‖ can be expected to go to zero as V1 converges to X.
It is possible to bound the norm of the oblique projections from the present section

in terms of more common orthogonal projections; see, for example, the following
proposition.

Proposition 13. Suppose that X, V , and W have orthonormal columns and that
W ∗V is nonsingular; then for the 2-norm we have

‖(I − V V ∗)X‖2 ≤ ‖(I − V (W ∗V )−1W ∗)X‖2 ≤ ‖(W ∗V )−1‖2 ‖(I − V V ∗)X‖2,

and for the Frobenius norm

‖(I−V V ∗)X‖F ≤ ‖(I−V (W ∗V )−1W ∗)X‖F ≤
√

1 + ‖(W ∗V )−1‖2F ‖(I−V V ∗)X‖F .

Proof. Define Z = (I − V V ∗)X and P = V (W ∗V )−1W ∗; then

‖Z‖2F = ‖(I − V V ∗)(I − P )X‖2F
= tr(X∗(I − P )∗(I − V V ∗)(I − P )X)

= ‖(I − P )X‖2F − ‖V ∗(I − P )X‖2F ≤ ‖(I − P )X‖2F

and

‖(I − P )X‖2F = ‖(I − P )Z‖2F = ‖Z − PZ‖2F = ‖Z‖2F + ‖PZ‖2F
≤ ‖Z‖2F (1 + ‖(W ∗V )−1‖2F ).

For the 2-norm we give a simplified and block version of the first part of the proof
found in Chaturantabut and Sorensen [2, Lem. 3.2]. For a nontrivial projector P it
holds that ‖I − P‖2 = ‖P‖2; see, for example, Szyld [24]. Therefore

‖Z‖2 = ‖(I − V V ∗)(I − P )X‖2 ≤ ‖(I − P )X‖2

and

‖(I − P )X‖2 = ‖(I − P )Z‖2 ≤ ‖I − P‖2 ‖Z‖2 = ‖P‖2 ‖Z‖2 ≤ ‖(W ∗V )−1‖2 ‖Z‖2.

Consequently, if ‖(W ∗V )−1‖ is sufficiently small, then the norms

‖(I − V (W ∗V )−1W ∗)X‖ and ‖V (W ∗V )−1W ∗X‖

can be seen as a generalization of sin∠(X,V ) and cos∠(X,V ), respectively; see Fig-
ure 1 for an illustration.

7. Two-sided distance properties. In the previous section we have considered
the convergence of subspaces to invariant subspaces. The focus of this section is on
the minimum distance between a given matrix A and a matrix with given invariant
subspaces. Given a subspace V, Noschese and Reichel [12] consider the problem of
finding the matrix M closest to A satisfying

(15) MV ⊆ V.



314 IAN N. ZWAAN AND MICHIEL E. HOCHSTENBACH

v

w
x

p

e

v

w

x

p
e

Fig. 1. Consider the approximation v to x, the projection p = v(w∗v)−1w∗x, and the
complementary part e = x − p. In the left diagram the angle between v and w is small, and
‖p‖ ≈ ‖v∗x‖ = cos∠(x,v) and ‖e‖ ≈ ‖(I − vv∗)x‖ = sin∠(x,v). In the right diagram the angle
between v and w is large, and ‖p‖ and ‖e‖ are no longer satisfactory approximations to the cosine
and sine.

In the two-sided case we impose the additional constraint

(16) M∗W ⊆W

for a given subspace W. Alternatively, this is the problem of finding the backward
error E = A −M , where the norm of E can be seen as a measure for the quality of
the subspaces as approximate invariant subspaces. Consider the following well-known
theorem [9, Main Thm.].

Theorem 14 (Kahan, Parlett, and Jiang [9]). Let A be an n× n matrix, and let
two n × m matrices V and W having orthonormal columns be given. Suppose that
W ∗V is nonsingular. Let

R = AV − V C, S∗ = W ∗A−DW ∗,

where C and D are Rayleigh quotients

C = (W ∗V )−1W ∗AV, D = W ∗AV (W ∗V )−1.

Then the solution E of

(A− E)V = V C and W ∗(A− E) = DW ∗

that simultaneously minimizes both

‖E‖2 = min
E
‖E‖2 = max{‖R‖2, ‖S‖2}

and

‖E‖F = min
E
‖E‖F =

√
‖R‖2F + ‖S‖2F

is given by
E = RV ∗ +WS∗.

Using the theorem we readily find the following result.

Corollary 15. Suppose that V and W are orthonormal bases of the subspaces
V and W, respectively, and that W ∗V is nonsingular. Then, the matrix M closest to
A that satisfies

MV ⊆ V and M∗W ⊆W
is given by

M = A− (I − V (W ∗V )−1W ∗)AV V ∗ +WW ∗A(I − V (W ∗V )−1W ∗).
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Furthermore, if two-sided Arnoldi is used to compute V , W , H̃, and K̃ so that

R = AV − V H̃ = ṽh̃∗ and S = A∗W −WK̃ = w̃k̃∗,

where ṽ, w̃, h̃, and k̃ are as in (8), then

‖E‖2 = max{‖ṽ‖ ‖h̃‖, ‖w̃‖ ‖k̃‖} and ‖E‖F =

√
‖ṽ‖2‖h̃‖2 + ‖w̃‖2‖k̃‖2

for E = A−M .

The matrix M from Corollary 15 satisfies the additional constraint

W ∗(A− zI)V = W ∗(M − zI)V

for all scalars z. This kind of shift-invariance allows us to interpret ‖E‖2 and ‖E‖F
as a backward error for the approximation of pseudospectra in section 8.2, where we
compute

σmin(W ∗(A− zI)V )

for a large number of complex shifts z near a region of interest. The matrix M is in
general not of low rank, and instead we might be interested in the two-sided Arnoldi
approximation

Am = V (W ∗V )−1W ∗AV (W ∗V )−1W ∗ = V H̃(W ∗V )−1W = V (W ∗V )−1K̃∗W ∗,

which is the unique rank-m = rank(W ∗AV ) matrix satisfying

AmV ⊆ V, A∗mW ⊆W, and W ∗AV = W ∗AmV.

An alternative for the singular value problem is to consider the problem of finding
the matrix N closest to A satisfying

NV ⊆ W and N∗W ⊆ V,

as opposed to M satisfying (15) and (16). Noschese and Reichel [12, sect. 3] show
that

N = (I −WW ∗)A(I − V V ∗) +WW ∗AV V ∗

minimizes the distance to A with

‖A−N‖2F = ‖AV ‖2F + ‖A∗W‖2F − 2‖W ∗AV ‖2F .

As before, N satisfies the additional constraint

W ∗(A− zI)V = W ∗(N − zI)V

for any scalar z, making ‖A − N‖F another backward error. The unique rank-m
approximation Bm satisfying

BmV ⊆ W, B∗mW ⊆ V, and W ∗AV = W ∗BmV

is given by the two-sided Arnoldi approximation

Bm = WW ∗AV V ∗ = W (W ∗V )H̃V ∗ = WK̃∗(W ∗V )V ∗.

The proposition below gives the distance between A and Bm; the proof closely follows
the arguments in [12, Prop. 3.3] but uses general left-orthonormal V and W .
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Proposition 16 (generalization of [12, Prop. 3.3]). Let V and W have orthonor-
mal columns, and define the matrix Bm = WW ∗AV V ∗; then

‖A−Bm‖2F = ‖A‖2F − ‖Bm‖2F .

Proof. Using the cyclic property of the trace, we obtain

‖A−WW ∗AV V ∗‖2F = tr(A∗A−A∗WW ∗AV V ∗ − V V ∗A∗WW ∗A

+ V V ∗A∗WW ∗AV V ∗)

= tr(A∗A)− tr(V ∗A∗WW ∗AV )− tr(V ∗A∗WW ∗AV )

+ tr(V ∗A∗WW ∗AV )

= ‖A‖2F − ‖Bm‖2F .

We have given a two-sided analogue of Noschese and Reichel’s result for (right) in-
variant subspaces. The bounds in Corollary 15 are particularly elegant and efficient to
compute in the context of two-sided Krylov–Schur. Distances in the case of invariant
singular subspaces are efficiently computable as well, assuming that the Frobenius
norm is used and A is explicitly available. To summarize, the distance properties
from this section can be used to gain insight into the quality of approximate invariant
subspaces.

8. Applications and numerical experiments.

8.1. Eigenvalue condition numbers. Suppose we wish to compute the best-
conditioned eigenvalues of a nonnormal matrix A, which is effectively the opposite of
the goal of the sensitive pole algorithm [13]. For instance, A might be constructed
from uncertain data, making the best-conditioned eigenvalues the most reliable ones.
Alternatively, one may be focused on the least sensitive eigenvalues of some A = A(p0)
obtained from a parameterized problem for a specific set of parameters given by p0.
Since the eigenvalue condition numbers are essential quantities, the choice of a two-
sided method over a one-sided method may be appropriate.

In Table 1 we compare one-sided and two-sided Krylov–Schur for the computation
of the best-conditioned eigenvalues. That is, we are looking for an approximation θ to
an eigenvalue λ, and an approximation κθ to κ(λ), where κ(λ) is as small as possible.
We recognize that it may be more useful in practice to restrict the search to the
best-conditioned eigenvalue near a target, but we make no such restriction here for
the sake of simplicity. We measure the relative errors

errλ =

∣∣∣∣λ− θλ
∣∣∣∣ and errκ(λ) =

∣∣∣∣κ(λ)− κθ
κ(λ)

∣∣∣∣ ,
as well as the number of matrix-vector products executed before the algorithms are
terminated. We use (10) as a stopping criterion and terminate one-sided and two-sided
Krylov–Schur when

‖Av − θv‖
|θ| ≤ ε210 and

max{‖Av − θv‖, ‖w∗A− θw∗‖}
|θw∗v| ≤ ε210,

respectively, where the θ’s are Ritz values, v and w are right and left Ritz vectors
with unit norm, and ε is the machine epsilon. For example, ε ≈ 2.22 ·10−16 and ε210 ≈
2.27 · 10−13 for IEEE double precision floating point numbers. We run the algorithms
with minimum subspace dimension m = 25 and maximum subspace dimension ` = 50
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Table 1
Median results over 1000 runs with different random initial vectors for computing the best-

conditioned eigenvalues of nonnormal matrices with one-sided and two-sided Krylov–Schur.

One-sided Two-sided

Name n κ(λ) errλ errκ(λ) MVs errλ errκ(λ) MVs

randn* 1024 3.34 1.25e + 00 9.82e− 01 800 1.01e− 14 3.97e− 14 1100

bfw782a* 782 1.00 4.00e− 02 9.96e− 01 100 3.55e− 15 3.09e− 14 200

ck656 656 1.02 9.75e− 01 8.70e− 01 1275 4.84e− 16 3.35e− 03 50

pde900 900 4.04 2.35e− 01 1.00e + 00 1575 2.67e− 15 1.89e− 14 125

rdb1250l 1250 1.05 9.55e− 01 8.51e− 01 400 7.20e− 15 3.69e− 15 150

olm1000 1000 1.00 1.00e + 00 9.94e− 01 3300 2.99e− 14 2.94e− 14 7525

qh1484 1484 1.00 1.00e + 00 8.77e− 01 825 2.87e− 04 4.27e− 10 75

rdb1250 1250 1.01 9.88e− 01 8.41e− 01 350 5.32e− 15 2.65e− 15 150

qc2534 2534 1.01 1.41e + 00 1.00e + 00 10300 7.36e− 15 2.42e− 15 75

af23560* 23560 1.10 9.37e− 01 9.96e− 01 2700 4.98e− 14 6.80e− 07 350

by default, and with m = 50 and ` = 100 for problems marked by an asterisk (*).
All the matrices, except randn, are from a test matrix collection of non-Hermitian
eigenvalue problems [1] and are balanced first [3]. The matrix randn is generated
using the identically named MATLAB function, and we use the same function to
generate random starting vectors.

The results in Table 1 show that two-sided Krylov–Schur computes more accurate
approximations to both λ and κ(λ) in every case, and does so using fewer matrix-
vector products in seven out of 10 cases. In particular, the total number of matrix-
vector products used by one-sided Krylov–Schur is 21625, versus 9800 used by two-
sided Krylov–Schur. The high relative error of the one-sided approximations can be
explained by the fact that one-sided Krylov–Schur converges to incorrect eigenvalues,
a problem not shared by its two-sided counterpart. Evidently, two-sided Krylov–Schur
benefits from the improved accuracy of the two-sided condition number estimates and
the two-sided Rayleigh quotient.

8.2. Pseudospectra. When studying nonnormal matrices, computing pseudo-
spectra rather than eigenvalues and condition numbers may be more insightful [25].
In particular, pseudospectra provide more detailed information regarding the behav-
ior of the eigenvalues under matrix perturbations in the nonnormal case. Indeed, one
possible definition of the ε-pseudospectrum of A that clearly shows its relation with
matrix perturbations is

Λε(A) = {z ∈ C : z ∈ Λ(A+ E) for some E with ‖E‖ < ε},

where Λ(A+E) denotes the spectrum of A+E. An alternate definition that is more
fitting for the computation of pseudospectra is

Λε(A) = {z ∈ C : σmin(A− zI) < ε}.

Ergo, one can simply compute σmin(A− zI) for z ∈ C and plot ε-level curves; unfor-
tunately, doing so for many grid points and large A is generally time- and memory-
consuming. One method to improve performance is to use one-sided Krylov–Schur to
obtain

AVm = Vm+1Hm,
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with orthonormal Vm+1, and compute the approximation

(17) σmin(A− zI) ≈ σmin((A− zI)Vm) = σmin(V ∗m+1(A− zI)Vm) = σmin(Hm− zI);

see Wright and Trefethen [26]. Since the right and left singular subspaces differ
for nonnormal matrices, it seems natural to project onto a subspace distinct from
Vm+1 = span{Vm+1}. At the same time, a shift-invariant subspace is ideal if the
goal is to reduce computational effort. This suggests that the left Krylov subspace
Wm belonging to A∗ may be an excellent choice, especially if Wm approximates an
invariant subspace belonging to the eigenvalues of interest. Hence, by using two-sided
Krylov–Schur we can compute the approximation

σmin(A− zI) ≈ σmin(W ∗m(A− zI)Vm)

or, if wm+1 and vm+1 have also been computed,

(18) σmin(A− zI) ≈ min{σmin(W ∗m+1(A− zI)Vm), σmin(W ∗m(A− zI)Vm+1)}.

The key idea is to use the shift-invariant subspaces Vm = Km(A,v1) and Wm =
Km(A∗,w1) to compute the smallest singular values in a region surrounding the eigen-
values of interest by imposing the Galerkin conditions

(A− zI)Vmc− θWmd ⊥ Wm,

(A− zI)∗Wmd− θVmc ⊥ Vm
for a large number of complex shifts z. Furthermore, the two-sided approach is sym-
metric in the sense that the same results are obtained if A is replaced by A∗ and the
starting vectors are swapped, which is not the case for the one-sided approximation.

We compute the pseudospectra of three disparate matrices in specific regions.
The first matrix, randn, is generated using the identically named MATLAB function.
The second and third matrices, rdb800l and pipe, are taken from Wright and Tre-
fethen [26, sect. 5]. For the Krylov–Schur algorithms we use minimum dimension
m = 25 and maximum dimension ` = 50. Table 2 lists additional details, including
the number of restarts, which are hand-picked to achieve near-optimal results. Be-
cause of the conditioning of the eigenvalues, we recompute V ∗m+1AVm and W ∗m+1AVm
before computing the pseudospectra, as opposed to working with (W ∗m+1Vm+1)Hm

and (V ∗m+1Wm+1)Km.

Table 2
The dimension size, region of interest, target, use of harmonic extraction, and number of

restarts (RS) for one-sided and two-sided Krylov–Schur for each matrix.

Name n Region Target Harmonic RS-1 RS-2

randn 1024 [−27,−17]× [17, 25] −22 + 21i yes 100 25

rdb800l 800 [−1.1, 1.1]× [−0.25, 2.75] +1.25i no 125 50

pipe 402 [−0.15, 0.05]× [−0.05, 0.05] +0.05 yes 1500 1000

The pseudospectra of the test matrices can be seen in Figure 2, and their approx-
imations with one-sided and two-sided Krylov–Schur in Figures 3 and 4, respectively.
The latter two figures also include heat maps of the quantity

(19) z 7→ log10

∣∣∣∣σmin(A− zI)− θ
σmin(A− zI)

∣∣∣∣ ,
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Fig. 2. Pseudospectra of randn (left), rdb800l (middle), and pipe (right). The level curves
range from 10−1.7 to 10−0.5, 10−1.4 to 10−0.5, and 10−5 to 10−3.5, respectively.
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Fig. 3. Level curves for the pseudospectra approximations obtained with one-sided Krylov–
Schur, with randn (left), rdb800l (middle), and pipe (right). The heat maps show the value of the
error measure defined in (19) and have the average values +0.249, +0.366, and −1.372, respectively.

−26 −18

18

24

−1 1
0

2.5

−0.13 0.03
−5

5
·10−2

−5

0

Fig. 4. Level curves for the pseudospectra approximations obtained with one-sided Krylov–
Schur, with randn (left), rdb800l (middle), and pipe (right). The heat maps show the value of the
error measure defined in (19) and have the average values −1.464, −0.920, and −1.597, respectively.

where θ is the approximation from either (17) for one-sided Krylov–Schur or (18)
for two-sided Krylov–Schur. The first two subplots in Figure 3 show that one-sided
Krylov–Schur is capable of capturing the qualitative behavior of the pseudospectrum
reasonably well, although the level curves appear to be “shifted.” For instance, the
outermost level curve in the rdb800l approximation corresponds to ε = 10−0.5, while
the true pseudospectrum has the level curve for ε = 10−0.8 at approximately the
same position. The displacement of the level curves is presumably caused by the high
relative errors in the approximate singular values. Indeed, for the same two exam-
ples, two-sided Krylov–Schur achieves lower relative errors and has better contour
approximations. The approximation quality in the last example is comparable for
both methods, with the two-sided Krylov–Schur approximation being more accurate
near the eigenvalues, and the one-sided Krylov–Schur approximation being better
further away. This contrast might be explained by the two-sided Rayleigh quotient
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having faster asymptotic convergence than the one-sided Rayleigh quotient. Finally,
we remark that only the one-sided approximation of the singular value is monotonic
in the sense that

σmin(A− zI) ≤ σmin(V ∗m+1(A− zI)Vm),

and as a result, there are areas where

σmin(A−zI) ≤ σmin(W ∗m(A−zI)Vm) or σmin(A−zI) ≥ σmin(W ∗m(A−zI)Vm),

separated by curves where

σmin(A− zI) = σmin(W ∗m(A− zI)Vm).

These “zero-error” curves tend to connect accurate Ritz values and show up as
dark(er) lines in the heat maps in Figure 4.

9. Conclusions. We have presented a two-sided Krylov–Schur method for non-
normal matrices as a natural generalization of the one-sided Krylov–Schur approach
by Stewart. An advantage of two-sided Krylov–Schur over two-sided Lanczos is the
use of orthonormal bases, and an advantage over one-sided Krylov–Schur is the simul-
taneous approximation of left and right eigenvectors or eigenspaces. The two-sided
approximations may already give useful information concerning eigenvalue condition-
ing during the iterations. Furthermore, for some applications, the two-sided method
may converge with fewer matrix-vector products than the standard Krylov–Schur
method.

Primary disadvantages of the new method are the computational cost per itera-
tion, which is roughly twice that of the one-sided Krylov–Schur method, and potential
numerical stability and accuracy issues in the computation of the Ritz values. How-
ever, the numerical issues caused by oblique projections can mainly be avoided with
a proper implementation, as discussed in section 5.

The two-sided Krylov–Schur method may be combined with either the standard
two-sided Rayleigh–Ritz extraction or the harmonic two-sided Rayleigh–Ritz extrac-
tion. We have seen that the implementation of the standard two-sided extraction
is relatively straightforward, while the implementation of the harmonic extraction is
more complicated.

Theoretical convergence properties have been investigated and generalized and
show when and how well we can expect two-sided methods to converge. Furthermore,
numerical experiments demonstrate that two-sided Krylov–Schur may excel in find-
ing the best-conditioned eigenvalues of nonnormal matrices. Additional numerical
experiments show that the shift-invariant left and right Krylov spaces computed with
two-sided Krylov–Schur may be useful for the approximation of pseudospectra.
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