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Chapter 1

Introduction

This dissertation concerns the development of new Krylov subspace methods for
two classes of well-known problems encountered in numerical mathematics. The
first class consists of standard matrix eigenvalue problems (cf., e.g., [3, 78]),
where the goal is to find scalars λ and nonzero vectors x such that

(1.1) Ax = λx

for a given matrix A. The second class consists of ill-posed problems (cf., e.g.,
[28]), where the objective is to reconstruct an unknown vector x from

(1.2) Ax = b,

where A is an ill-conditioned matrix and the right-hand side b is contaminated
by noise. In both cases, we will assume that A is too large for the practical use
of direct methods, but is sufficiently structured to facilitate fast matrix-vector
products. For example, A may be a sparse matrix with dimensions ranging from
the order a few thousands up to a few billions.

Eigenvalue problems are important in many fields, for instance, chemistry,
control theory, dynamic systems, geology, mechanics, pattern recognition, quan-
tum mechanics, signal processing, statistics, vibration analysis, etc. Ill-posed
problems are found in astronomy, computed tomography, computer vision, other
fields related to image analysis and restoration, geophysics, signal processing,
statistics, etc.

Krylov subspace methods are popular for solving large-scale problems of the
form (1.1) and (1.2), when using direct methods is infeasible and fast matrix-
vector products are available. The central idea of subspace methods is to project
the problem onto a lower dimensional search space, and to extract an approximate
solution by solving a small-scale problem instead of the original large-scale
problem. However, challenging problems remain; and four of those problems are
outlined below, as well as the contributions of this dissertation toward solutions.

1



2 1. Introduction

1.1 Eigenvalue inclusion regions
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Figure 1.1: The boundary of the field of values (solid line) in relation to the eigenval-
ues (dots) of the Tolosa matrix [2] of dimension 340; before (left) and after (right)
balancing.

Computing eigenvalues accurately can be computationally expensive, even
with state-of-the-art iterative methods; thus, it may be desirable to have a fast
alternative for initial and exploratory phases. For example, sometimes it suffices
to have regions in the complex plane which are guaranteed to contain the (desired)
eigenvalues, without knowing exactly where the eigenvalues reside in those
regions. An attractive eigenvalue inclusion region is the field of values given by

W(A) = {x∗Ax : x ∈ Cn, ∥x∥ = 1}.

The region defined byW(A) is convex and guaranteed to contain all eigenvalues;
furthermore, its boundary can be approximated efficiently and is often tight
around the eigenvalues. However, occasionally the numerical radius r(A) of A is
much larger than the spectral radius ρ(A) of A, where r(A) and ρ(A) are defined
as

r(A) = max
z∈W(A)

|z | and ρ(A) = max
λ∈Λ(A)

|λ |,

makingW(A) meaningless as an inclusion region.
In Chapter 2 we show that the quality of the field of values as an inclusion

region may often be improved by balancing the matrix A when r(A)/ρ(A) ≫ 1;
see Figure 1.1 for an example. Balancing is an existing technique designed
to decrease the disparity between row and column norms through a carefully
constructed diagonal similarity transform. Several interesting connections with
the nonnormality of matrices are investigated and emphasized. Moreover, we
propose a new, simple, and fast balancing methodology for computing spectral
inclusion regions, where the Hessenberg matrix resulting from the Arnoldi process
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is balanced and used to approximate the field of values. The effectiveness of the
method is demonstrated with numerical experiments.

1.2 Eigenvalue sensitivity
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Figure 1.2: Pseudospectra level curves for the 340×340 Tolosa matrix, for ε = 10−1.1

(dotted), 10−1.4 (dash dotted), 10−1.7 (dashed), and 10−2 (solid).

Although inclusion regions can be appropriate in a preliminary stage of eigen-
value computations, they only provide limited information. Relevant information,
apart from the eigenvalues and eigenvectors themselves, often includes the behav-
ior of eigenvalues under perturbations. Information of this kind can be provided,
for instance, by asymptotic error bounds and pseudospectra. An important and
intuitively straightforward asymptotic error bound is given by

|λ̃ − λ | ≲ κ(λ)∥E∥ with κ(λ) =
∥x∥ ∥y∥
|x∗y |

,

where (λ, x) is a simple eigenpair of A with corresponding left eigenvector y,
λ̃ is some eigenvalue of A + E, and x∗ denotes the conjugate transpose of x.
Accordingly, the eigenvalue condition number κ(λ) provides an indication of the
worst-case sensitivity of λ to perturbations of A. The challenge is to approximate
κ(λ), and therefore x and y, efficiently and accurately for nonnormal matrices.
One-sided methods may unappealingly require two runs to compute acceptable
approximations to both the left and right eigenvectors; while current two-sided
methods simultaneously approximate the left and right eigenvectors, and thus
eigenvalue condition numbers, but also face inherent difficulties with restarts,
numerical stability, and error analysis.

Additional insight may be gained from pseudospectra; indeed, one possible
definition of the ε-pseudospectrum of A is

Λε(A) = {z ∈ C : z ∈ Λ(A + E) for some E with ∥E∥ < ε}.
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A visual representation of the boundary ofΛε reveals the extent with which eigen-
values can “move” under perturbations; see, for example, Figure 1.2. Computing
pseudospectra is computationally demanding; hence, one-sided subspace meth-
ods are sometimes used to approximate parts of pseudospectra and to speedup
the process. However, the choice for one-sided methods is arbitrary to some extent.

We present an extension of the Krylov–Schur restarting method to the two-
sided Arnoldi method for large-scale nonnormal matrices in Chapter 3. This ex-
tension allows for the simultaneous approximation of left and right eigenvectors,
and thus eigenvalue condition numbers, while working exclusively with orthonor-
mal bases. Specifically, two-sided Krylov–Schur maintains orthonormal bases for
a separate left and right Krylov subspace, and applies only orthonormal trans-
formations to these bases during the restarts. Therefore, we may expect, with
a careful implementation, better numerical stability compared to unsymmetric
Lanczos. We derive algorithms for both standard Ritz extraction and harmonic
Ritz extraction, and present a quantitative and qualitative error analysis. We
complete the chapter with numerical examples where we compute the least sen-
sitive eigenvalues and use the left and right shift-invariant bases to approximate
pseudospectra.

1.3 Tikhonov regularization
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Figure 1.3: The exact solution (dashed) and reconstructed solution (solid) of the
phillips test problem from Regularization Tools [27], with regularization (left)
and without regularization (right).

The (pseudo)inverse of an ill-conditioned matrix tends to amplify high-
frequency components in the right-hand side when used to solve least-squares
problems of the form (1.2). Hence, if the measured data b is contaminated by
noise, the noise will be amplified and dominate the solution; see, for example,
Figure 1.3. Dampening the high-frequency components may often improve the
quality of the solution, and can be achieved with regularization methods. A well-
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known method is, for instance, standard form Tikhonov regularization, where
the solution of

argmin
x

∥Ax − b∥2 + µ∥x∥2

for some µ > 0 is used as a solution for (1.2). This minimization problem can be
solved efficiently for large-scale problems by projecting it onto a Krylov subspace
generated with Golub–Kahan–Lanczos bidiagonalization or the Arnoldi method
if A is square. For certain problems it may be more appropriate to use general
form Tikhonov regularization, and solve

argmin
x

∥Ax − b∥2 + µ∥Lx∥2,

for a suitably chosen L. When L , I, it is no longer obvious that standard Krylov
subspaces are satisfactory search spaces, and generalized Krylov subspaces may
be considered instead. This concern is further exacerbated in multiparameter
Tikhonov regularization:

argmin
x

∥Ax − b∥2 +
ℓ∑

i=1

µi∥Lix∥
2,

which faces the additional problem of parameter selection. Numerous methods
exist for selecting a sensible µ in standard and general form Tikhonov regular-
ization; however, selecting “good” µi in multiparameter regularization is more
complicated.

We introduce a new method for large-scale multiparameter Tikhonov regular-
ization with general regularization operators in Chapter 4. The method works by
repeatedly extending the search space in multiple directions, similar to general-
ized Krylov, and subsequently removing the less promising directions to ensure
moderate growth of the search space. Moreover, we propose a discrepancy princi-
ple based parameter selection strategy related to perturbation results. Numerical
experiments are performed to test the algorithms.

1.4 The generalized singular value decomposition

Consider general form Tikhonov regularization and suppose, for example, that

A ∈ Rm×n, L ∈ Rp×n, m ≥ n ≥ p, N (A) ∩N (L) = {0};



6 1. Introduction

then the generalized singular value decomposition (GSVD) of the matrix pair
(A , L) is given by

A = UCX−1, UTU = I, diag(c1, . . . , cn) ∈ [0, 1]n×n,

L = VSX−1, VTV = I, diag(s1, . . . , sp) ∈ [0, 1]p×n,

where X is nonsingular and CTC + STS = I. The regularized solution can now be
written as

xµ = (ATA + µLTL)−1ATb

= X(CTC + µSTS)−1CUTb =
n∑
i=1

ci
c2i + µs

2
i

xiu
T
ib,

where si = 0 for i = p+1, . . . , n. This formula indicates that solutions for different
µ or multiple right-hand sides b can be obtained efficiently once the GSVD has
been computed. It also motivates the truncated GSVD solution, which is obtained
by setting µ = 0 and only summing the terms corresponding to the k largest ci.
Typically, k ≪ n for ill-conditioned A, and the intention is to exclude the terms
where 1/ci becomes too large and amplify unwanted components excessively.
Besides regularization problems, the GSVD is also useful for solving eigenvalue
problems of the form

s2i A
TAxi = c2i L

TLxi,

without using the products ATA and LTL and potentially losing information. Unfor-
tunately, computing the GSVD using direct methods is only feasible for moderately
sized matrix pairs.

In Chapter 5 we derive two new algorithms for computing of a few of the ex-
tremal generalized singular values and their corresponding generalized singular
vectors. The context and connections with existing methods are stated, conver-
gence behavior is investigated, and error analysis is provided. The chapter ends
with numerical experiments demonstrating the competitiveness of the methods,
and illustrating their suitability for the approximation of the truncated GSVD of
matrix pairs with rapidly decaying generalized singular values.

1.5 Outline

The structure of this thesis follows the structure of the previous sections and is
summarized below.
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Chapter 2 is dedicated to matrix balancing for field of value based spectral
inclusion regions with connections to nonnormality of matrices, together with a
new and efficient methodology for the approximation of these inclusion regions.

An extension of the Krylov–Schur restarting method to two-sided Arnoldi
is given in Chapter 3, along with an extensive error analysis. Suggestions for a
robust implementation and possible applications are included.

In Chapter 4 a multidirectional subspace expansion technique is considered
for large-scale multiparameter Tikhonov regularization. Furthermore, a selection
strategy for multiple parameters is proposed.

A generalized Davidson algorithm and an alternative multidirectional version
are derived and analyzed in Chapter 5. Both methods depart from previous
iterative methods for the GSVD, and depend on restarts with multiple vectors
instead of inner-outer iterations.

Chapter 2 and Chapter 5 have been submitted for publication [38, 97], Chap-
ter 3 has been accepted for publication in SIAM J. Matrix Anal. Appl. [98], and
Chapter 4 has appeared in J. Sci. Comput. [99]. All articles have been edited for
this dissertation and have minor editorial changes and differences.

1.6 Notation

We use the following notation, unless stated otherwise. Regular capital letters are
used for matrices and calligraphic letters for subspaces; for example, N (A) and
R(A) denote the nullspace and range of A, respectively. Bold lowercase letters
denote vectors, while regular lowercase Roman and Greek letters denote scalars.
Specifically, we use I for the identity matrix, D for diagonal matrices, E and F for
error matrices, and ei for the i-th standard basis vector; m, n, p, k, l, and ℓ for
dimensions and sizes; i, j, k, l, and ℓ for indices; κ for condition numbers, λ for
eigenvalues, µ for regularization parameters, and σ for (generalized) singular
values. The quantitiesσmax(G) andσmin(G) are defined as the largest and smallest
generalized singular values, respectively, of a general matrix G. R and C signify
the sets of real and complex numbers, respectively. Different flavors of the same
letter are usually related; for instance, the elements of a diagonal matrix D are
di, the elements of a general matrix A are ai j, the columns vi of V form a basis
of the subspace V. The transpose of A is AT , and the Hermitian transpose is A∗.
Finally, we use the notation ∥ · ∥ = ∥ · ∥2 for the Euclidean norm and ∥ · ∥F for
the Frobenius norm.





Chapter 2

Matrix balancing for field of value type
inclusion regions

Abstract. The field of values may be an excellent tool for generating a spectral inclusion region: it
is easy to approximate numerically, and for many matrices this convex region fits relatively tightly
around the eigenvalues. However, for some matrices the field of values may be a poor eigenvalue
inclusion region (which happens, more precisely, if the numerical radius is much larger than the
spectral radius). In this chapter, we show that balancing the matrix, also known as scaling, may be
very helpful for generating a quality inclusion region based on the field of values. We review some
known balancing techniques, present an implementation for the balancing of sparse matrices, and
introduce a new scaling method by scaling the Hessenberg matrix resulting from a Krylov process.
Moreover, several interesting connections with nonnormality of matrices are pointed out. We show
that a combination of balancing and a projected field of values may render excellent approximate
spectral inclusion regions.

Key words. Field of values, numerical range, (approximate) spectral inclusion region, eigenvalue
inclusion region, eigenvalue localization, matrix balancing, matrix scaling, Krylov scaling, nonnor-
mal matrix, (relative) measure of nonnormality, large sparse matrix, eigenvalue problem, strongly
connected components.

AMS subject classification. 47A12, 65F10, 65F15, 65F30, 65F35, 65F50.

2.1 Introduction

Let A be a large sparse real or complex n × n matrix and let ∥ · ∥ denote the
2-norm. The field of values (or numerical range)

W(A) = {x∗Ax | x ∈ Cn, ∥x∥ = 1}

may be an attractive spectral inclusion region for two main reasons. First, it is a
convex and compact set which is guaranteed to contain all eigenvalues (cf. [44]).
Second, it can be efficiently approximated by the method proposed by Johnson
[45], who pointed out thatW(A) can be efficiently approximated by computing

9



10 2. Matrix balancing for field of value type inclusion regions

the maximal and minimal eigenvalues of the Hermitian part of eiαA:

H(eiαA) = 1
2 (e

iαA + (eiαA)∗)

for a number of angles α ∈ [0, π). Therefore, we use

(2.1)
max
z∈W(A)

Re(e−iαz) = 1
2 λmax(eiαA + (eiαA)∗),

min
z∈W(A)

Re(e−iαz) = 1
2 λmin(eiαA + (eiαA)∗),

for every angle α, where Re denotes the real part of a complex number, and λmax

and λmin are the largest and smallest eigenvalue of a Hermitian matrix.
For large sparse matrices, it is not necessary to compute all eigenvalues of the

Hermitian parts 1
2 (e

iαA + (eiαA)∗) of the matrices eiαA; instead, we may use the
Lanczos method (see, e.g., [90]) to approximate the largest and smallest eigen-
value of the Hermitian parts. The Lanczos method generates a low-dimensional
Krylov subspace to approximate eigenpairs of large (sparse) matrices. It generally
approximates the extremal eigenvalues well, particularly the largest and smallest
eigenvalue. We may run a new Lanczos process for every α in a selected discrete
set (cf. [11]); in this case, the largest eigenpair will be approximated using a
different Krylov subspace for each angle α, generated by a different matrix of
the form eiαA + (eiαA)∗ and an initial vector, for instance a random vector, or
the approximate eigenvector for a previous value of α. The resulting set will be
a subset of W(A), and will often be a good approximation to this set. As W(A)
contains all eigenvalues, such an approximating subset ofW(A) will usually also
be an eigenvalue inclusion region.

We can also generate a cruder approximation toW(A) that is computationally
cheaper and therefore more attractive, by using one single Krylov subspace for
all angles α. We first carry out an Arnoldi process (see, e.g., [90]) on A and an
initial vectorw1 of unit length (for instance, a random vector). Let

Vk = Kk(A,w1) = span(w1, Aw1, . . . , A
k−1w1)

be the Krylov space of dimension k generated by A andw1, where we make the
common assumption that Vk has dimension k. Performing k steps of the Arnoldi
process yields the decomposition

(2.2) AVk = VkHk + hk+1,kwk+1e
∗
k,

where the columns of Vk form an orthonormal basis for Vk withw1 as its first
column, Hk is an upper Hessenberg matrix, and ek is the kth canonical basis
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vector. One can now approximateW(A) byW(A) ≈ W(V∗
k AVk) = W(Hk), as was

originally suggested by Manteuffel [58, 59]; see also [36, 37]. This approximation
has the following attractive monotonic inclusion property (see [58]).

Proposition 2.1.

W(Hk) ⊆ W(Hk+1) ⊆ W(A).

In this proposition the convex setW(Hk) =W(V∗
k AVk) may be interpreted as the

field of values of A restricted to the Krylov subspace Vk. In particular, we know
that after k stepsW(Hk), and therefore alsoW(A), contains the convex hull of the
eigenvalues of Hk, which are the Ritz values of A with respect to Vk. Since k ≪ n
in a subspace method, determining W(Hk) is computationally very attractive.
We note that the interior approximationW(Hk) toW(A) will usually result in a
smaller region than a region where a separate Krylov space per angle α is used;
however, the difference may be small, cf. [36, Ex. 2.2]. The resulting field of
valuesW(Hk) is often a good approximate inclusion region for the spectrum.

However, in some cases W(Hk) may be much too small, or much too large.
A simple extreme example of the former case is the 10 × 10 matrix A with as
its only elements aj+1, j = 10j−1, for j = 1, . . . , 9, on its subdiagonal, where the
starting vector isw1 = e1. It is easy to see that the k-dimensional Krylov space
generated by A andw1 is span([e1 . . . ek]), and that the logarithmic norm of Hk

(the largest real part; cf. the remainder of this section) increases exponentially
with k. However, since one usually chooses a random initial vector, this extreme
behavior is rare.

The main motivation for this chapter is the opposite case: unfortunately, for
some matricesW(A) andW(Hk) may be poor spectral inclusion regions because
they are much larger than the convex hull of the spectrum. We give an example
for the 4000 × 4000 tols4000 matrix [2]; see Figure 2.1.
For this matrix, the spectral radius

(2.3) ρ(A) = max
λ∈Λ(A)

|λ |

is ρ(A) ≈ 4.84 ·103, whereΛ(A) denotes the spectrum of A. The numerical radius

(2.4) r(A) = max
z∈W(A)

|z |

is significantly larger: r(A) ≈ 1.17 · 107, so that the ratio

(2.5)
r(A)
ρ(A)
,
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Figure 2.1: (a): Spectrum; (b): spectrum, fields of valuesW(A) (solid) andW(H20)

(dash) for tols4000. Note that the spectrum is barely visible (as a dot) because of
the large scale.

which ideally should be close to one for a tight spectral inclusion region, is
approximately 2.42 · 103. Ratio (2.5) will be of interest throughout the rest of
this chapter.

In this example, the field of values W(Hk) is also far too large for a useful
approximate spectral inclusion region: for k = 20, we have the numerical radius
r(H20) ≈ 5.38 · 106, so that r(H20)/ρ(A) ≈ 1.11 · 103. Therefore, bothW(A) and
W(H20) are poor spectral inclusion regions. A striking property of the tols4000
matrix is that it is very badly scaled: the ratio of the largest and smallest column
norms is O(107), and similarly for the row norms. Therefore, we investigate
balancing (or scaling, two terms that are generally used interchangeably) of the
matrix to improve the (approximate) eigenvalue inclusion regions based on the
field of values.

Eigenvalue inclusion regions are useful in many applications, for instance, to
get a quick estimate of the spectrum, or to determine a suitable region for the
computation of pseudospectra [12, Thm. 2.1]. As a historical note, Bendixson al-
ready showed in 1902 [5, Thm. II] that min Re(W(A)) ≤ Re(λ) ≤ maxRe(W(A))
for all eigenvalues λ of A; in fact, both the real and imaginary parts can be
bounded in this way; see, for instance [92]. We note that for some applications,
not the spectrum is important but the field of values itself. One example is the
quantity d

dt ∥e
tA∥ |t=0 , which is the logarithmic norm (or numerical abscissa), equal

to max
z∈W(A)

Re(z) = 1
2 λmax(A+ A∗); see, e.g., [89]. In these cases, the techniques of

this chapter, which aim at getting good spectral inclusion regions by modifying
the field of values, may be less relevant.

The rest of this chapter is organized as follows. Section 2.2.1 explores why
scaling may be a good idea to generate high-quality approximate eigenvalue
inclusion regions. In Section 2.3 we review existing scaling methods for the
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matrix to generate better spectral inclusion regions based on the field of values.
We also present a new implementation of a sparse balancing routine spbalance.
Section 2.4 introduces a simple new Krylov scaling approach. We end with some
numerical experiments and conclusions in Sections 2.5 and 2.6.

2.2 Scaling

2.2.1 Matrix scaling for the field of values

A simple but key observation of this chapter is given in the following proposition.

Proposition 2.2. Let D ∈ Rn×n be a nonsingular matrix. Then W(D−1AD) is a
spectral inclusion region for A. Moreover, ρ(D−1AD) = ρ(A).

Proof. This follows easily from the observation that A and D−1AD have the same
eigenvalues. □

In the context of matrix scaling, D is usually restricted to be either a diagonal
matrix with positive elements, or a permutation thereof; this explains the choice
of the notation. Also, several scaling methods restrict the diagonal elements to
powers of two in order to avoid roundoff errors.

The next ingredient that we need is the fact that the matrix two-norm tightly
squeezes the numerical radius, as quantified by the following proposition; see
[39, p. 331].

Proposition 2.3.

1
2 ∥A∥ ≤ r(A) ≤ ∥A∥.

We may attempt to choose suitable scaling matrices D such thatW(D−1AD) is a
tighter inclusion region thanW(A); in particular, we hope that r(D−1AD) ≪ r(A).
Then also (cf. (2.5))

(2.6)
r(D−1AD)
ρ(D−1AD)

=
r(D−1AD)
ρ(A)

≪
r(A)
ρ(A)
.

In view of Propositions 2.2 and 2.3, it is a good idea to try to reduce ∥A∥ to reach
this goal. Proposition 2.3 leads to the following relatively straightforward key
corollary.

Corollary 2.4. If the nonsingular diagonal matrix D is such that ∥D−1AD∥ < 1
2 ∥A∥

then r(D−1AD) < r(A).
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Scaling tends to decrease the matrix norm; the following example illustrates this
idea.

Example 2.1. Let A =
[
0 4
1 0

]
, then ∥A∥ = 4, while the norm of the scaled

matrix D−1AD using D =
[
2 0
0 1

]
is 2. It may also be checked that W(A) has

numerical radius ρ(A) = 5
2 , whileW(D−1AD) is the interval [−2, 2] and therefore

ρ(D−1AD) = 2.

Since

1√
n
max{ ∥A∥1, ∥A∥∞ } ≤ ∥A∥ ≤

√
n min{ ∥A∥1, ∥A∥∞ },

having approximately equal row and column sums may decrease ∥A∥. This norm
decrease is guaranteed if scaling A decreases ∥A∥1 or ∥A∥∞ by at least a factor n.

2.2.2 Scaling and nonnormality

Another viewpoint on scaling is the following. The optimal convex eigenvalue
inclusion region would be the convex hull of the spectrum. Therefore, the field of
values for a normal matrix with the same eigenvalues would provide this optimal
inclusion region. Hence, we can view balancing as an attempt to transform A into
a matrix with the same eigenvalues that is closer to normal. (Note that this is a
different question as the one studied in [77], where the closest normal matrix is
sought with no conditions on the spectrum.)

We will therefore consider some measures of nonnormality; some are men-
tioned in [19]. Let

(2.7) A = Q(Λ + N)Q∗

be a Schur decomposition of A. Here, Λ is a diagonal matrix containing the eigen-
values, while the quantities ∥N ∥ (minimized over all possible Schur forms) and
∥N ∥F are possible measures of nonnormality introduced by Henrici [29]; see
µ̃3 and µ3 in [19]. Here, ∥ · ∥F denotes the Frobenius norm. These quantities is
invariant under shifts of the matrix (A → A + τI), but not under scalar multipli-
cation A → γA. In contrast, the measures ∥N ∥/∥A∥ and ∥N ∥/∥Λ∥ (minimized
over all Schur forms) are invariant under scalar multiplication but not under
shifts. Following [9, 10], we will call measures of nonnormality that are invariant
under scalar multiplication relative measures. In [9, 10], two such measures are
given: ∥N ∥F/∥Λ∥F and ∥AA∗ − A∗A∥F/∥A2∥F , where the latter would perhaps be
more natural.

Denote the singular values of A by σ1 ≥ · · · ≥ σn, and arrange the eigen-
values according to their moduli: |λ1 | ≥ · · · ≥ |λn |. In view of Proposition 2.3,
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ratio (2.5) is closely connected to a comparison of the largest singular value
(σ1 = ∥A∥) and the largest eigenvalue in modulus. The measure of nonnormality
µ4 in [19], introduced by Ruhe [75, Thm. 1], is

max
i

|σi − |λ i | |.

Restricting to the case i = 1, we might define a relative version of this quantity as

∥A∥ / ρ(A).

Both ratios r(A)/ρ(A) and ∥A∥/ρ(A) can be seen as relative measures of nonnor-
mality, as will become clear in the next proposition, in which some connections
between the various measures are given. When an inequality involves ∥N ∥, it
holds for all possible N in a Schur form (2.7).

In the following proposition we give some properties of ratio (2.5) in terms
of other measures of nonnormality.

Proposition 2.5. If ρ(A) > 0; then

max

{
1,

1
2

∥A∥
ρ(A)

}
≤

r(A)
ρ(A)

≤ min

{
1 +

∥N ∥

ρ(A)
,

r(A)
| ∥A∥ − ∥N ∥ |

}
,(a)

1 −
ρ(A)
r(A)

≤ 1 −
ρ(A)
∥A∥

≤
∥N ∥

∥A∥
≤ 1 +

ρ(A)
∥A∥

≤ 1 +
ρ(A)
r(A)
,(b)

and if A is diagonalizable with A = XΛX−1, then

(c)
∥A∥
ρ(A)

≤ κ(X).

Proof. The first two inequalities in (a) follow from Proposition 2.3 and the fact that
W(A) contains all eigenvalues. The last inequality follows from Proposition 2.3 and
some triangular inequalities: note that ∥Λ∥ = ρ(A), and since Q∗AQ = N + Λ,
we have ∥A∥ − ρ(A) ≤ ∥N ∥ ≤ ∥A∥ + ρ(A), and | ∥A∥ − ∥N ∥ | ≤ ρ(A) ≤ ∥A∥. We
can use similar arguments for (b).

Part (c) was noted in [11], where it was also concluded that if (2.5) is large
then any eigenvector basis of A is ill conditioned, which means that A is far from
normal. □

In the following example we illustrate the various quantities using a well-known
matrix with real eigenvalues. We will also show that ratio (2.5) can become
arbitrarily large by scaling a symmetric matrix.
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Example 2.2. Let A be the n × n tridiagonal matrix with stencil [1, 0, 1]. It
is well known that λmin ≈ −2 and λmax ≈ 2. Let Dα = diag(1, α, . . . , αn−1)
be a diagonal scaling matrix, and define Aα = D−1

α ADα. Then Aα has stencil
[α−1, 0, α] and, it may be checked that, for α → ∞,

r(Aα) ∼ α,
r(Aα)
ρ(Aα)

∼ 1
2α,

∥Aα∥
ρ(Aα)

∼ 1
2α,

∥Nα∥
∥Λα∥

∼ 1
2α,

∥Nα∥
∥Aα∥

→ 1.

In particular, we see that ratio (2.5) can get arbitrarily large by scaling. However, in
this case balancing the matrix may improve the situation. For instance, for n = 10
and α = 10, we have r(A10)/ρ(A10) ≈ 5.05. After applying the spbalance routine
(see next section), this ratio reduces slightly to 4.38. (Note that in this case [69]
and Matlab’s balance give the same balancing as spbalance since no permutations
are carried out.) For α = 100 the scaling gives a clearer improvement. In this
case, r(A100)/ρ(A100) ≈ 50.0, while spbalance gives a reduction to 4.01.

During our experiments we encountered the following interesting simple, but
unfortunate situation.

Example 2.3. Consider the 2 × 2 matrix

Aε =

[
1 1

−1 −1 + ε

]
.

Then, for ε → 0, it may be checked that ρ(Aε) ∼
√
ε, while r(Aε) → 1. Therefore,

the ratio (2.5) can also get arbitrarily large in this case, but now scaling will yield
no improvement, since the norms of the first row and column, and the norms of
the second row and column are equal.

2.2.3 Scaling and the field of values in the D2-inner product

Let B be a symmetric positive definite matrix. Instead of the standard inner
product (x, y) = y∗x, we now consider the B-inner product (x, y)B = y∗Bx. In
particular, we look at the inner product induced by D2, where D is the diagonal
scaling matrix with positive diagonal entries.

Interestingly enough, the next result gives a connection between the field of
values of the balanced matrix, and the field of values of the original matrix in the
D2-inner product. This gives another elegant interpretation of the field of values
of the scaled matrix.

Definition 2.6. We define the field of valuesWB(A) with respect to the B-inner
product to be the set{ x∗BAx

x∗Bx
| x ∈ Cn, ∥x∥ = 1

}
.
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Proposition 2.7. Let D be a symmetric positive definite matrix. The field of values
WD−2(A) with respect to the D−2-inner product is identical to the standard field of
values of the scaled matrix D−1AD.

Proof. This follows directly from the fact that, with y = Dx,

x∗D−2Ax
x∗D−2x

=
y∗D−1ADy

y∗y

for all nonzero x. □

Similarly, theWD2(A)-field of values obtained by the D2-inner product is equal
to the standard field of values of the scaled matrix DAD−1.

After these mainly theoretical properties, we now switch our focus to practical
matrix balancing techniques.

2.3 Existing scaling methods and a new implementation

We will review several known scaling methods and present a new implementation
of spbalance.

2.3.1 Matlab’s balance

First, we consider a well-established scaling technique implemented in the LAPACK
routine xGEBAL and Matlab function balance. It goes back to work by Osborne
[63] and Parlett and Reinsch [69]. The idea is to find a matrix D, a permutation
of a diagonal matrix, that scales the rows and columns of A in a given norm, for
instance the 1-norm or 2-norm, such that

∥D−1AD ei∥ ≈ ∥e∗i D
−1AD∥, i = 1, . . . , n.

We used Matlab’s implementation balance, which claims to render a matrix that
“has, as nearly as possible, approximately equal row and column norms”. We
found in experiments that this is certainly not always the case.¹ However, the
balanced matrix may have a (sometimes much) smaller norm (in norms such as
the 1-norm, 2-norm, ∞-norm, or the Frobenius norm).

In Figure 2.2(a), we plot the spectrum and field of values of the balanced
matrix B for A = tols4000. We conclude thatW(B) is an immensely improved
eigenvalue inclusion region; cf. Figure 2.1(b).

¹Note that for the balanced tols4000 matrix, the ratio of the norms of the rows and corre-
sponding columns could still be as large as ≈ 340, both in the 1-norm and 2-norm!
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Figure 2.2: (a) Spectrum and fields of valuesW(B) (solid) for the scaled matrix B
for tols4000 by Matlab’s balance. (b) Idem for our implementation spbalance for
sparse matrices.

However, Matlab’s function balance is currently available for dense matrices
only. This was a motivation for Chen and Demmel [16] to develop several balanc-
ing methods for large sparse matrices. We will consider these and other balancing
methods in the next subsections.

2.3.2 Sparse balancing

The function spbalance for the balancing of sparse matrices improves on Matlab’s
balance: spbalance finds the strongly connected components of a directed graph
whose adjacency matrix has the same structure as A and then sorts the compo-
nents using a topological sort. Chen and Demmel provide an implementation² of
spbalance. We made a memory-efficient implementation ourselves, which is also
suitable for 64-bit systems. The function spbalance seems to improve on Matlab’s
balance since the permutation algorithm used in balance is a special case of the
more general strongly connected components algorithm; see [16] for details.

In Figure 2.2(b), we see that we get a tighter spectral inclusion region with a
different scaled matrix. In Section 2.5 we will see that our spbalance implemen-
tation gives excellent results for field of values type inclusion regions. Note that
Figure 2.2 plots the fields of values for the large balanced matrix; in the numeri-
cal experiments in Section 2.5 we consider the fields of values of the projection
of the (balanced) matrices onto a Krylov space. This makes the generation of a
spectral inclusion region computationally even more attractive (cf. Section 2.1).

²http://www.cs.pomona.edu/∼tzuyi/Research/Balancing/
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2.3.3 Chen and Demmel’s Krylov balancing

In this and the next subsection we review three Krylov balancing methods intro-
duced by Chen and Demmel [16]. Let |A| be the matrix with entries |ai j |, and
assume that |A| is irreducible. Then, since |A| is an irreducible nonnegative ma-
trix, it has a unique maximal eigenvalue which is real and positive, called the
Perron eigenvalue. The corresponding right and left eigenvectors, which we will
denote by x and y, respectively, are called the Perron vectors. It can be shown
that the scaling

(2.8) D = diag(xi) = diag(x1, . . . , xn)

achieves the lower bound on ∥D−1AD∥∞, which is ρ(|A|) [16].
For large sparse matrices, approximating the Perron vectors of |A| may not

be feasible if A is not given explicitly but instead by a routine carrying out the
matrix-vector product. Therefore, Chen and Demmel [16] introduced scaling
methods based on the approximation of the Perron vectors by a power-type
method on A instead of on |A|. The name Krylov balancing was chosen since the
method uses the results of some matrix-vector products of A with vectors with
elements ±1. This approach was motivated by several statistical observations in
[16]. Algorithm 2.1 generates a scaling matrix by approximating the right Perron
vector x.

Algorithm 2.1 (Krylov balancing (function KrylovAz)).
Input: A, m ∈ N (number of steps, default: 5).
Output: A scaling matrix D such that D−1AD is (hopefully) better scaled than A.
1. D = I
2. for k = 1, . . . , m do
3. z = vector of random ±1s
4. p = D−1AD z
5. D = D · diag(|pi |)

We note that Algorithm 2.1 performs relatively poorly in the numerical experi-
ments in Section 2.5. One of the possible reasons being that the elements of A
are only accessed via a matrix-vector product, which is also an advantage of the
method; see Section 2.5 for a further comparison and discussion. Also, in spite
of the name, we remark that this method does not use a Krylov space, but some
matrix-vector products with A, although we may still project the scaled matrix
onto a Krylov space; see Section 2.5.
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2.3.4 Chen and Demmel’s two-sided Krylov balancing

Chen and Demmel [16] also introduce a scaling method based on a two-sided
Krylov method, exploiting matrix-vector products with both A and AT . Similar to
Algorithm 2.1, this method is matrix free (it does not need A explicitly but only the
action of A and AT applied to a vector); in contrast to Algorithm 2.1, this method
needs actions with the transpose. Chen and Demmel expect that this method will
generally give better results than the one-sided method of Section 2.3.3, since it
uses more information.

They show that with the scaling

(2.9) D = diag(
√
x1/y1, . . . ,

√
xn/yn)

B = D−1AD is balanced in the weighted sense, that is, Bw = BTw forw = D−1x.
Moreover, the Perron eigenvalue is perfectly scaled (has eigenvalue condition
number equal to 1), since the right and left Perron vectors coincide for the scaled
matrix.

Proposition 2.8. With the choice (2.9), B is balanced in the weighted sense.

Proof. [16]; see also [7]. □

Algorithm 2.2 generates a scaling matrix by approximating both x and y by using
matrix-vector products with A and AT instead of |A| and |A|T , which may not
be available. Still, in Section 2.5 we will also carry out experiments where |A|
and/or |A|T are used to approximate the Perron vectors x and y.

Algorithm 2.2 (Two-sided Krylov balancing (function KrylovATz)).
Input: A, m ∈ N (number of steps, default: 5).
Output: A scaling matrix D such that D−1AD is (hopefully) better scaled than A.
1. D = I
2. for k = 1, . . . , m do
3. z = vector of random ±1s
4. p = D−1AD z
5. q = DATD−1 z
6. D = D · diag(

√
|pi/qi |)

Finally, Chen and Demmel [16] propose to add a cutoff value to Algorithm 2.2:
in line 5, if |pi | or |qi | is smaller than the cutoff value, then

√
|pi/qi | is replaced

by 1. The chosen default cutoff value is 10−8. We will see in Section 2.5 that this
Cutoff approach is superior to KrylovAz and KrylovATz for our purposes. Still,
spbalance and the method of the next section are even better.
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2.4 A new Krylov balancing approach

We now propose a new Krylov scaling approach, which is simple yet seems to be
powerful in numerical experiments. The key idea is to first carry out a modest
number of Krylov steps, giving the Arnoldi decomposition of the type (2.2).
Subsequently, we scale the Hessenberg matrix Hk instead of the original matrix
A. We note that this balancing of the Hessenberg matrix does not imply a scaling
of the original matrix.

In our numerical examples, we use our implementation spbalance to scale the
matrix. In fact, in the numerical experiments of Section 2.5 it turns out that often
the Hessenberg matrices are well scaled already, so that scaling is performed
only in a limited number of cases. Moreover, in the examples this balancing is
often “modest”: the maximal condition number of the scaling matrix D in the
experiments is equal to 8, except for tols4000, for which it is very large (O(109)).

Another option for the scaling of the Hessenberg matrix would be to use the
weighted Perron scaling of Section 2.3.4. However, in the numerical experiments
this approach sometimes performs poorly because the norm of the skew-Hermitian
part 1

2 (Hk − H∗
k) increases a lot, resulting in a field of values that is much too

large; see also Section 2.5.
We present pseudocode for the new approach in Algorithm 2.3.

Algorithm 2.3 (Krylov balancing for a field of values type (approximate) eigen-
value inclusion region).
Input: A, starting vector w1 (default: random), k (subspace dimension, de-
fault: 20).
Output: An approximate eigenvalue inclusion region.
1. Compute Arnoldi decomposition (2.2).
2. Scale Hk giving H̃k = D−1HkD (see text).
3. ComputeW(H̃k).

We note that in Step 2 any sensible scalingmethod can be used; in our experiments,
we used our spbalance implementation. The new method has several advantages.
It is very simple, and has only two parameters with sensible defaults values.
Balancing is necessary only for a small Hessenberg matrix and therefore virtually
for free. In many cases, the Hessenberg matrices are already well scaled. Although
Watkins [91] discusses situations where scaling of Hessenberg matrices may
be disadvantageous for computing eigenvalues, we will see in the numerical
experiments in the next section that scaling may be a good idea to generate
high-quality spectral inclusion regions based on the field of values.

We summarize some properties of the various scaling methods in Table 2.1.
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Table 2.1: Properties of the different scaling methods.

Method Scales Matrix free Transpose free

Az (Alg. 1) A ✓ ✓

ATz, Cutoff (Alg. 2) A ✓ —

spbalance A — —

Krylov balancing (Alg. 3) Hk ✓ ✓

2.5 Numerical experiments

In this section, we will give the results of some extensive numerical tests, which
we hope are interesting for the community. We test a number of large sparse
matrices from the Matrix Market [60]. As an indication of the quality of the field
of values of the scaled matrices as eigenvalue inclusion regions we use the ratio
(2.5), which in an ideal case is 1, which corresponds to the optimal situation that
the radius of the eigenvalue inclusion region is as large as the spectral radius. The
values of r(A) used in the fourth column are approximated by runs of Matlab’s
eigs for 16 different angles (cf. (2.1)). The matrices have various ratios (2.5),
including some equal to 1.

In Table 2.2, we give the results for three different scaling methods by Chen
and Demmel: KrylovAz, KrylovATz, and its variant Cutoff [16] as described in
Sections 2.3.3 and 2.3.4. We first scale the original large matrix A to a matrix B,
and then approximate W(B) by W(H20), where H20 is the 20 × 20 Hessenberg
matrix generated by an Arnoldi decomposition (2.2) on B: see the columns labeled
“w/o” (meaning “without extra scaling of the Hessenberg matrix”). We also add
a new idea, by considering a second scaling, of the resulting Hessenberg matrix,
by spbalance. This yields a scaled matrix H̃20 and a corresponding field of values
W(H̃20). Therefore, this involves a double scaling: a scaling of the original matrix,
and a scaling of the generated Hessenberg matrix (columns labeled “with”). In
all cases, a random starting vector is used to generate the Krylov spaces. The
total time needed for all experiments is also given for each method. Note that the
main computational costs consist of 5 matrix-vector products (MVs) for KrylovAz
and 10 for KrylovATz and Cutoff for the scaling, and then 20 MVs to obtain the
Hessenberg matrix. As we see, KrylovAz and KrylovATz fail in several cases or
yield poor results, also for matrices with ratio (2.5) close to 1. There are two
possible reasons for this. The first is that the methods break down since the
diagonal matrix contains a zero or because of a division by zero (see Step 3
in Algorithm 2.1 and Steps 4–6 in Algorithm 2.2). In the second case a scaling
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matrix D is rendered, but the ratio r(H20)/ρ(A) is poor (> 10).
The Cutoff method is more reliable. Of all methods in Table 2.2, Cutoff with

double scaling gives the best results.
We now move to Table 2.3. In the column labeled Perron, we use the Perron

scaling (2.8), where we approximate the Perron vector x by 5 steps of the power
method with |A|. Subsequently, 20 steps of Arnoldi are carried out, with or without
an extra scaling of the Hessenberg matrix with spbalance. In the column labeled
“2-Perron”, the same is done, but now the Perron scaling (2.9) is exploited, where
the Perron vectors x and y are approximated by 5 steps of the power method
with |A| and |A|T , respectively.

The next column shows the results of our implementation of spbalance. For this
method, additional scaling of the Hessenberg matrices turns out to be unnecessary.
Finally we display the results of our new K+B approach: Krylov balancing by scaling
of the Hessenberg matrix only. We first carry out an Arnoldi process followed by
a (possible) balancing of the Hessenberg matrix. The main computational costs
consist of 5 MVs for Perron and 10 MVs for 2-Perron for the scaling, and then 20
MVs to obtain the Hessenberg matrix. The complexity of spbalance is O(n+ nnz)
for the balancing, where “nnz” stands for the number of nonzeros (see [16]).
Again, we need an additional 20 MVs for the Arnoldi method. The K+B approach is
the cheapest approach with only 20 MVs, as the scaling of the Hessenberg matrix
is practically for free. We stress the important fact that spbalance is available only
when A is given explicitly, all other scaling methods can also be used if A is given
via a matrix-vector product.

As we see, the spbalance and K+B methods give near optimal results in most
cases. The K+B approach has difficulties with the tolosa matrices, for which
spbalance performs very well. We note that for tols2000, the K+B suffers a
problem similar to the one mentioned in Example 2.3. K+B is slightly better than
spbalance for the tridiagonal matrix. We also give the ratio r(H̃20)/ρ(H̃20) in the
last column of the table, where H̃20 is the scaled Hessenberg matrix of the K+B
method. (Note that ρ(H̃20) = ρ(H20); see Proposition 2.2.) If r(H̃20) is much
larger than ρ(H̃20), such as for tols2000 and tols4000, this may be viewed as
a hint that the field of values may not be an excellent spectral inclusion region.
Therefore, the ratio r(H̃20)/ρ(H̃20) may serve as an indicator of the reliability of
the approximate inclusion region.

As an example, we plot the approximate inclusion regions of three of the
methods for the matrix olm5000 in Figure 2.3. The region generated by the K+B
method is clearly the best.

Some of the matrices in the test set are unsymmetric but have all real eigen-
values. As an interesting note, we remark that there is no easy test to check if the
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Table 2.3: Ratios r(H20)/ρ(A) for some large sparse matrices A, where H20 denotes
the scaled and projected matrix A. We display the results of four different methods:
scaling with an approximation of the Perron vector x (Perron); scaling with approxi-
mations of the Perron vector x and y (2-Perron, two-sided Perron), both without or
with additional scaling of the resulting Hessenberg matrix; our implementation of
spbalance; and our new “Krylov and balance” (K+B) approach. By “—” failures are
indicated (breakdown of scaling method or ratio > 10; see text). The last column
displays the ratio r(H̃20)/ρ(H̃20), where H̃20 is the scaled Hessenberg matrix of the
K+B method.

Perron 2-Perron spbal K+B r(˜H20)
ρ(˜H20)

Matrix w/o with w/o with

af23560 7.53 1.34 1.10 1.12 1.01 1.02 1.02

cry10000 1.25 1.18 1.01 1.01 1.00 1.00 1.00

dw8192 2.27 1.73 1.00 1.00 1.00 1.00 1.00

grcar10000 — 2.85 — 7.05 1.08 1.08 1.10

grcar10000+ 5I — 2.48 2.55 1.64 1.03 1.03 1.05

grcar10000+10I 9.45 1.72 1.50 1.10 1.02 1.02 1.03

memplus 1.30 1.04 1.00 1.00 1.00 1.00 1.00

olm5000 6.19 1.96 1.18 1.08 1.00 1.01 1.01

rw5151 — 2.68 1.40 1.29 0.98 0.98 1.06

sherman2 5.97 3.53 1.00 1.00 1.00 1.03 1.03

sherman3 1.39 1.16 1.00 1.00 1.00 1.00 1.00

sherman5 3.73 1.12 1.00 1.00 1.00 1.02 1.02

tols2000 1.40 1.24 1.02 1.03 1.01 — 14.7

tols4000 1.08 1.09 1.01 1.03 1.01 3.27 2.90

tridiag(0.1,0,10) — — — 9.05 5.00 4.98 1.13

utm5940 9.98 1.15 0.98 1.08 0.95 0.94 1.02

Time (sec) 0.9 1.0 2.2 0.7
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Figure 2.3: Spectrum and fields of values W(H̃20) (solid) for the new method:
the scaled Hessenberg matrix H̃20, for the matrix olm5000. Also shown are the
approximate inclusion regions obtained by the Cutoff (dash) and KrylovATz (dots)
methods, where the Hessenberg matrices are also scaled.

spectrum is real. In particular, the field of values type inclusion regions cannot
“feel” that the eigenvalues are all real. Indeed, for a matrix with real eigenvalues,
the field of values may be arbitrarily large “in the direction of the imaginary axis”.

For instance, for an upper triangular matrix with real eigenvalues, the skew-
Hermitian part S = 1

2 (A − A∗) may have an arbitrarily large norm. This means
that both

|min{ω | iω ∈ W(A)}| and |max{ω | iω ∈ W(A)}|

may be arbitrarily large. In Figure 2.3 for olm5000 (which is not upper tri-
angular), we see examples of this phenomenon. The family of matrices Aα in
Example 2.2 is another example: while Aα has the same spectrum independent
of α, the field of values gets arbitrarily large for α → ∞. For matrices with real
eigenvalues, we observe in numerical tests that Perron scaling of the Hessenberg
matrix may significantly worsen the results, i.e., yield a spectral inclusion region
that is much larger in the imaginary direction. This is one of the reasons that we
opt for spbalance to scale the Hessenberg matrices.

2.6 Conclusion

For large sparse matrices, the field of values may be efficiently approximated
by projection onto Krylov spaces. The resulting sets are approximate spectral
inclusion regions and may often be of good quality. However, for some matrices
this eigenvalue inclusion region may be much too large.

For these cases, we have shown that scaling may be a very helpful technique
to generate tight spectral inclusion regions based on a field of values. We have
reviewed various existing balancing methods of the original large matrix: the
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KrylovAz, KrylovATz, and Cutoff methods. We have also considered two scaling
methods by using approximate Perron vectors of the matrices |A| and/or |A|T .
We are able to improve the results of these methods by scaling their resulting
Hessenberg matrices from the Arnoldi decompositions. This therefore involves a
double scaling: a scaling of the original matrix, and a scaling of the generated
Hessenberg matrix. Of the mentioned approaches, the Cutoff method with extra
Hessenberg scaling gives the best results.

Subsequently, we have proposed a new implementation of spbalance and a
new promising scaling approach by only scaling the small Hessenberg matrix
generated by an Arnoldi process. While the “Krylov and balance” (K+B) approach
is simple and cheap, it provides equally good results compared with spbalance for
almost all cases and better results than the other methods for most examples. We
stress that this “Krylov and balance” technique involves a scaling of the Hessenberg
matrix but does not imply a scaling of the original matrix.

Note that Matlab’s balance and the spbalance method only are applicable if
A is given in explicit form; the other scaling methods, including the new K+B
approach, are also suitable for matrix-vector products given by functions. More-
over, besides being matrix-free, the K+B approach has the additional advantage
of being transpose-free.

In fact, we believe that the combination of an Arnoldi decomposition, matrix
balancing of the original matrix or the Hessenberg matrix, and the generation
of the field of values of the (scaled) Hessenberg matrix yield an approximate
eigenvalue inclusion region that may be very hard to beat both in quality and
efficiency. We would like to stress the astonishing result that very good eigenvalue
inclusion regions for large sparse matrices may be obtained with just a dozen
of matrix-vector products. This is surprising since accurately finding just one
eigenvalue may cost hundreds or even thousands of matrix-vector products. As an
interesting illustration, we note that the eigenvalues of the 10000 × 10000 grcar
matrix are so sensitive that state-of-the-art existing numerical methods, such
as Matlab’s eigs or Krylov–Schur [81], are unable to find these even modestly
accurately. However, obtaining a high-quality inclusion region for all eigenvalues
is very well possible!

Finally, the field of values of a scaled matrix is always convex, and it may
therefore contain large regions with no eigenvalues. We remark that the method
of this chapter may be combined with eigenvalue exclusion regions as described
in [36]. The intersection of the field of values with one or more exclusion regions,
which results in a non-convex inclusion region, may even provide (much) smaller
spectral inclusion regions.





Chapter 3

Krylov–Schur-type restarts
for the two-sided Arnoldi method

Abstract. We consider the two-sided Arnoldi method and propose a two-sided Krylov–Schur type
restarting method. We discuss the restart for standard Rayleigh–Ritz extraction as well as harmonic
Rayleigh–Ritz extraction. Additionally, we provide error bounds for Ritz values and Ritz vectors in
the context of oblique projections and present generalizations of, e.g., the Bauer–Fike theorem
and Saad’s theorem. Applications of the two-sided Krylov–Schur method include the simultaneous
computation of left and right eigenvectors and the computation of eigenvalue condition numbers.
We demonstrate how the method can be used to find the least sensitive eigenvalues of a nonnormal
matrix and how to approximate pseudospectra by using left and right shift-invariant subspaces. The
results demonstrate that significant improvements in quality can be obtained over approximations
with the (one-sided) Krylov–Schur method.

Key words. Two-sided Krylov–Schur, Krylov–Schur, two-sided Arnoldi, dual Arnoldi, implicit
restart, harmonic two-sided extraction, eigenvalue condition number, pseudospectra, least sensitive
eigenvalues.

AMS subject classification. 15A18, 15A23, 65F15, 65F50.

3.1 Introduction

The two-sided Lanczos algorithm (cf., e.g., [78, Sec. 6.4]) is an important alterna-
tive to the Arnoldi method (cf., e.g., [78, Sec. 6.2]) for nonnormal matrices. The
former uses short three-term recurrences at the expense of double the number
of matrix-vector multiplications. But if one wants the eigenvectors, then either
the bases must be stored, or they must be computed in a second run. This means
that either the storage needed for two-sided Lanczos becomes roughly twice
that of Arnoldi, or the number of matrix-vector multiplications doubles again.
Moreover, in practice re-biorthogonalization is often necessary because of the
loss of biorthogonality in finite precision arithmetic. The accuracy and stability
of the computed bases may be improved by using the two-sided Arnoldi method,
proposed by Ruhe [76], to replace biorthonormal by orthonormal bases. In this

29
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chapter, we propose an efficient restarting technique for two-sided Arnoldi, in-
spired by the Krylov–Schur algorithm [81, 84]. We also investigate perturbation
and convergence properties using error bounds for Ritz values and Ritz vectors
in the context of oblique projections.

There already are generalizations of the Krylov–Schur method, for example,
for Hamiltonian matrices and the product eigenproblem by Kressner [50, 51], as
well as a block method for symmetric matrices by Zhou and Saad [96], a version
for unitary eigenproblems by Roden and Watkins [18], and a method for the
truncated SVD by Stoll [86]. Jaimoukha and Kasenally [42] present a restarted
two-sided Krylov method for model order reduction; however, their method uses
projections to remove unstable elements without changing the initial vectors.
Instead, we are interested in arbitrary exterior eigenvalues of general nonnormal
matrices and allow our method to implicitly modify the initial vectors.

Applications that may benefit from two-sided Krylov–Schur include those
where the condition number of eigenvalues is important and those where both
the left and right eigenvectors are desired. In particular, we use two-sided Krylov–
Schur to find eigenvalues with the lowest condition numbers and to approximate
pseudospectra. The former may be useful to compute the least sensitive eigen-
values of parameterized matrices, or the most reliable eigenvalues of matrices
containing uncertain data. The latter application can provide insight into the
(worst-case) behavior of eigenvalues under perturbations. Our contribution is a
new type of approximation using two shift-invariant subspaces.

The rest of this chapter is organized as follows. First we review Stewart’s
Krylov–Schur method in Section 3.2. Then we introduce a new two-sided Krylov–
Schur method in Section 3.3 and its harmonic counterpart in Section 3.4. Sec-
tion 3.5 explores the relation between two-sided Arnoldi and two-sided Lanczos.
The focus of Section 3.6 is on perturbation and convergence theory, and that
of Section 3.7 on distance properties. Finally, Sections 3.8 and 3.9 contain the
numerical experiments and conclusions.

3.2 One-sided Krylov–Schur

The Krylov–Schur method by Stewart [81, 84] combines the Arnoldi method with
a restarting mechanism based on the Schur decomposition. Let A be an n × n
matrix and consider the Krylov subspace

(3.1) Vℓ = Kℓ(A, v ) = span{v, Av, A2v, . . . , Aℓ−1v },
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where ℓ ≪ n. It is well known that the Arnoldi method creates a basis Vℓ for Vℓ
satisfying the decomposition

(3.2) AVℓ = VℓHℓ +vℓ+1h
∗
ℓ = Vℓ+1Hℓ,

where Vk+1 = [Vℓ vℓ+1] has orthonormal columns and Hℓ = [Hℓ; h∗
ℓ
] is upper-

Hessenberg. When Hℓ is an arbitrary full-rank (ℓ+1)× ℓ matrix, it is nevertheless
possible to transform the decomposition into the described upper-Hessenberg
form [81, Thm 2.2]. To perform a restart, compute the Schur decomposition

Hℓ = QSQ∗,

where Q is unitary and S is upper triangular, and define V̂ℓ = VℓQ andˆhℓ = Q∗hℓ;
then

AV̂ℓ = V̂ℓS +vℓ+1ˆh
∗
ℓ .

Partition the above decomposition as

A
[
V̂1 V̂2

]
=

[
V̂1 V̂2

] [
S11 S12
0 S22

]
+vℓ+1

[
ˆh∗1 ˆh∗2

]
,

where it may be assumed without loss of generality that the desired eigenvalues
of Hℓ are along the diagonal of S11. Lastly, truncate to obtain

AV̂1 = V̂1S11 +vℓ+1ˆh
∗
1.

We summarize the one-sided Krylov–Schur method in Algorithm 3.1.

Algorithm 3.1 (One-sided Krylov–Schur [81]).
Input: A ∈ Cn×n, starting vector v1, minimum and maximum dimensions m and
ℓ, tolerance tol.
Output: Vm+1 and Hm such that ∥AVm − VmHm∥ ≤ tol.
1. for number of restarts do
2. Expand the Krylov decomposition to AVℓ = VℓHℓ +vℓ+1h∗ℓ .
3. Compute Hℓ = QSQ∗, and partition Q = [Q1 Q2] and S =

[ S11 S12
S22

]
.

4. Set Vm = VℓQ1, Hm = S11, and hm = Q∗
1hℓ .

5. if ∥hm∥ ≤ tol then break
6. end

The Krylov–Schur method extracts approximations to eigenvalues and eigen-
vectors using the standard Galerkin condition

AVℓc − θVℓc ⊥ Vℓ .
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However, it is also possible to extract eigenvalues by choosing a different test
subspace Uℓ and imposing the modified Galerkin condition

AVℓc − θVℓc ⊥ Uℓ .

In this case a Krylov–Schur type restart is more elaborate [84], but allows, for
instance, restarts with harmonic Ritz value extraction. The following two sections
show how the one-sided Krylov–Schur restart can be modified to restart either
two-sided Arnoldi or harmonic two-sided Arnoldi.

3.3 Two-sided Krylov–Schur

In this section we derive the two-sided Krylov–Schur method. Assume A is a
nonnormal n× n matrix, and consider the right Krylov subspace in (3.1) together
with the left Krylov subspace

Wℓ = Kℓ(A∗,w) = span{w, A∗w, (A∗)2w, . . . , (A∗)ℓ−1w}.

The two-sided Arnoldi method proposed by Ruhe [76], and later as a block
method by Cullum and Zhang [17], independently generates orthonormal bases
for the right search space Vℓ and the left search space Wℓ . This can be done
by applying the (one-sided) Arnoldi method twice. Let the generated bases be
denoted by Vℓ andWℓ respectively; then the following relations are satisfied:

(3.3)
AVℓ = VℓHℓ +vℓ+1h

∗
ℓ = Vℓ+1Hℓ,

A∗Wℓ =WℓKℓ +wℓ+1k
∗
ℓ =Wℓ+1Kℓ,

where both Vℓ+1 = [Vℓ vℓ+1] and Wℓ+1 = [Wℓ wℓ+1] consist of orthonormal
columns. The next step is to extract approximate eigenvectors and eigenvalues
using the two-sided Rayleigh–Ritz method. For this purpose, the matrices Hℓ and
Kℓ are modified to be Rayleigh quotients of A and A∗, respectively. The Rayleigh
quotient of a matrix M is defined here as Y ∗MX for a full column rank matrix X
with left inverse Y ∗ (cf., e.g., [82, p. 252]). AssumingW∗

ℓ
Vℓ is nonsingular, let

H̃ℓ = Hℓ + (W
∗
ℓVℓ)

−1W∗
ℓvℓ+1h

∗
ℓ,

K̃ℓ = Kℓ + (V
∗
ℓWℓ)

−1V∗
ℓwℓ+1k

∗
ℓ

and

˜vℓ+1 = (I − Vℓ(W
∗
ℓVℓ)

−1W∗
ℓ )vℓ+1,

˜wℓ+1 = (I −Wℓ(V
∗
ℓWℓ)

−1V∗
ℓ )wℓ+1.
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Then it is possible to rewrite (3.3) as

(3.4)
AVℓ = Vℓ H̃ℓ + ˜vℓ+1h

∗
ℓ,

A∗Wℓ =Wℓ K̃ℓ + ˜wℓ+1k
∗
ℓ .

Since ˜vℓ+1 is orthogonal toWℓ and ˜wℓ+1 is orthogonal to Vℓ , it follows that

(3.5)
H̃ℓ = (W∗

ℓVℓ)
−1W∗

ℓ AVℓ,

K̃ℓ = (V∗
ℓWℓ)

−1V∗
ℓ A

∗Wℓ .

Because (W∗
ℓ
Vℓ)−1W∗

ℓ
and (V∗

ℓ
Wℓ)−1V∗

ℓ
are left inverses of Vℓ andWℓ respectively,

we recognize H̃ℓ and K̃ℓ as Rayleigh quotients of A and A∗. Furthermore, the
eigenvalues of H̃ℓ and of K̃∗

ℓ
satisfy the following proposition due to Cullum and

Zhang [17].

Proposition 3.1. Using the previous definitions, H̃ℓ and K̃∗
ℓ
are similar ifW∗

ℓ
Vℓ is

nonsingular.

Proof. Since (V∗
ℓ
Wℓ)−∗ = (W∗

ℓ
Vℓ)−1, it is easy to deduce from (3.5) that

(W∗
ℓVℓ)H̃ℓ =W∗

ℓ AVℓ = K̃∗
ℓ (W

∗
ℓVℓ).

□

IfW∗
ℓ
Vℓ is singular, then one can perform additional steps of the Krylov process,

or remove vectors untilW∗
j Vj is nonsingular for some j.

We are now ready to derive a new two-sided restarting approach inspired by
(one-sided) harmonic Krylov–Schur restarts [84]. Consider the Schur decomposi-
tions

H̃ℓ = QSQ∗ and K̃ℓ = ZTZ∗,

where the eigenvalues of H̃ℓ and K̃ℓ are ordered along the diagonals of S and
T , respectively, and are such that sj j = t∗j j. If such a pairing cannot be found due
to roundoff errors, then an alternative is to sort sj j and t∗j j independently based
on some desirable quantity such as their distance to a target, the size of the real
part, etc. Substituting the above Krylov–Schur decompositions in (3.4) yields

AVℓ = VℓQSQ
∗ + ˜vℓ+1h

∗
ℓ,

A∗Wℓ =WℓZTZ
∗ + ˜wℓ+1k

∗
ℓ .
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Let V̂ℓ = VℓQ, Ŵℓ =WℓZ, ˜hℓ = Q∗hℓ , and ˜kℓ = Z∗kℓ , so that

(3.6)
AV̂ℓ = V̂ℓS + ˜vℓ+1˜h

∗
ℓ,

A∗Ŵℓ = ŴℓT + ˜wℓ+1˜k
∗
ℓ,

and in partitioned form

(3.7)

A
[
V̂1 V̂2

]
=

[
V̂1 V̂2

] [
S11 S12
0 S22

]
+ ˜vℓ+1

[
˜h∗1 ˜h∗2

]
,

A∗
[
Ŵ1 Ŵ2

]
=

[
Ŵ1 Ŵ2

] [
T11 T12
0 T22

]
+ ˜wℓ+1

[
˜k∗1 ˜k∗2

]
.

We can now truncate the partitioned decompositions to

(3.8)
AV̂1 = V̂1S11 + ˜vℓ+1˜h

∗
1,

A∗Ŵ1 = Ŵ1T11 + ˜wℓ+1˜k
∗
1.

The vector ˜vℓ+1 is in general not orthogonal to V̂1, and ˜wℓ+1 is not orthogonal to
Ŵ1. This problem can be remedied by computing

(3.9)
AV̂1 = V̂1Ĥ +ˆvℓ+1ˆh

∗
1,

A∗Ŵ1 = Ŵ1 K̂ + ˆwℓ+1ˆk
∗
1,

where [V̂1 ˆvℓ+1] and [Ŵ1 ˆwℓ+1] have orthonormal columns, and

Ĥ = S11 + (V̂
∗
1˜vℓ+1)˜h

∗
1,

K̂ = T11 + (Ŵ
∗
1 ˜wℓ+1)˜k

∗
1,

ˆvℓ+1 = ∥(I − V̂1V̂
∗
1 )˜vℓ+1∥

−1(I − V̂1V̂
∗
1 )˜vℓ+1,

ˆwℓ+1 = ∥(I − Ŵ1Ŵ
∗
1 )˜wℓ+1∥

−1(I − Ŵ1Ŵ
∗
1 )˜wℓ+1,

ˆh1 = ∥(I − V̂1V̂
∗
1 )˜vℓ+1∥ ˜h1,

ˆk1 = ∥(I − Ŵ1Ŵ
∗
1 )˜wℓ+1∥ ˜k1.

From here, the search spaces spanned by V̂1 and Ŵ1 can be expanded indepen-
dently using the (one-sided) Arnoldi method. Below in Algorithm 3.2 we sum-
marize the two-sided Krylov–Schur method for the computation of approximate
right and left invariant subspaces.
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Algorithm 3.2 (Two-sided Krylov–Schur).
Input: Nonnormal A ∈ Cn×n, starting vectorsv1 andw1, minimum and maximum
dimensions m and ℓ.
Output: Vm+1, Wm+1, Hm, and Km such that AVm = Vm+1Hm ≈ VmHm and
A∗Wm =Wm+1Km ≈ WmKm.
1. for number of restarts do
2. Expand the Krylov decompositions to

AVℓ = VℓHℓ +vℓ+1h
∗
ℓ, A∗Wℓ = WℓKℓ +wℓ+1k

∗
ℓ,

using the Arnoldi process, and update Mℓ =W∗
ℓ
Vℓ .

3. Compute Hℓ = Hℓ +M−1
ℓ
W∗
ℓ
vℓ+1h∗ℓ andvℓ+1 = vℓ+1−VℓM−1

ℓ
W∗
ℓ
vℓ+1.

4. Compute Kℓ = Kℓ+M−∗
ℓ
V∗
ℓ
wℓ+1k∗ℓ andwℓ+1 =wℓ+1−WℓM−∗

ℓ
V∗
ℓ
wℓ+1.

5. Compute the Schur decompositions Hℓ = QSQ∗ and Kℓ = ZTZ∗.
6. Partition Q, S, Z, and T as in (3.7).
7. Set Vm = VℓQ1, Hm = S11, hm = Q∗

1bℓ .
8. SetWm =WℓZ1, Km = T11, km = Z∗1cℓ .
9. Set Mm = Z∗1MℓQ1.

10. Set Hm = Hm + (V∗
mvℓ+1)h

∗
m, vm+1 = (I − VmV∗

m)vℓ+1,
hm = ∥vm+1∥hm, vm+1 = vm+1/∥vm+1∥.

11. Set Km = Km + (W∗
mwℓ+1)k

∗
m,wm+1 = (I −WmW∗

m)wℓ+1,
km = ∥wm+1∥km,wm+1 =wm+1/∥wm+1∥.

12. if converged (e.g., cf. (3.10)) then break
13. end

Usually, the oblique projections in steps 3 and 4 of Algorithm 3.2 must be
repeated at least once in practice [85, Sec. 7], which can be seen as the oblique
analogue of reorthogonalization. Step 12 requires extra attention as well, since
properly measuring the convergence in two-sided Krylov–Schur is more complex
than in one-sided Krylov–Schur. Luckily, we can rely on the work of Kahan, Parlett,
and Jiang [46], who investigated the convergence of two-sided Lanczos and
derived a set of termination criteria. We describe some of their results below.

For two unit vectors v andw withw∗v , 0, define the two-sided Rayleigh
quotient

ρ = ρ(v,w∗) =
w∗Av
w∗v

and the right and left residuals

r = (A − ρI)v and s = (A − ρI)∗w ;



36 3. Krylov–Schur-type restarts for the two-sided Arnoldi method

then the partial derivatives of ρ are

∂v ρ(v,w
∗) =

s∗

w∗v
and ∂w∗ ρ(v,w∗) =

r
w∗v
.

Consequently, ρ should not be used as an approximate eigenvalue unless the
value of max{∥s∥, ∥r∥}/|w∗v | is sufficiently small relative to ρ. An additional
result shows that for an eigenvalue λ near ρ the bound

|λ − ρ| ≤ κ(λ)∥E∥ +O(∥E∥2)

holds [46, Sec. 5], where ∥E∥ ≤ max{∥r∥, ∥s∥} and κ(λ) is the condition number
of λ. While κ(λ) is unknown in practice, it can be approximated with |w∗v |−1;
see, e.g., Theorem 3.3 and [46, Sec. 8].

In the context of two-sided Krylov–Schur we compute

H̃ℓC = CΘ (with Θ = diag(θ1, . . . , θℓ) and ∥c j∥ = 1),

K̃ℓD = DΓ (with Γ = diag(γ1, . . . , γℓ) and ∥d j∥ = 1),

where Θ would equal Γ∗ in exact arithmetic, and take v j = Vℓc j andw j =Wℓd j

as the right and left Ritz vectors. Then the Rayleigh quotients ρ j = ρ(v j,w j) can
be shown to equal the Ritz values θ j = γ j, so that the residuals satisfy

rj = ∥(A − ρ j I)v j∥ = ∥(A − θ j I)v j∥ = ∥˜vℓ+1∥ |h∗ℓc j |,

sj = ∥(A − ρ j I)
∗w j∥ = ∥(A − γ j I)

∗w j∥ = ∥˜wℓ+1∥ |k∗ℓd j |.

Using the sensitivities κ j = |w∗
jv j |

−1, we terminate, for example, if the relative
error

(3.10)
κ j

|ρ j |
max{∥rj∥, ∥sj∥}

is sufficiently small for the desired value(s) of ρ j. In our tests using finite precision
arithmetic, it was advantageous to use the right eigenvectors of both H̃ℓ and
K̃ℓ instead of using the left and right eigenvectors of only one of the two. In
some cases it may also be numerically preferable to use the Rayleigh quotients ρ j
instead of the Ritz values θ j and γj [80, Sec. 4].

In this section we have discussed a two-sided version of the Krylov–Schur
algorithm in addition to a suitable stopping criterion. In the subsequent section we
focus on a two-sided Krylov–Schur restart with harmonic eigenvalue extraction.
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3.4 Harmonic two-sided Krylov–Schur

The eigenvalue extraction from the previous section corresponds to imposing the
Galerkin conditions

(3.11)
AVℓc − θVℓc ⊥ Wℓ,

A∗Wℓd − ηWℓd ⊥ Vℓ .

Suppose one is interested in interior eigenvalues near a target τ not equal to an
eigenvalue. These eigenvalues are exterior eigenvalues of the shifted and inverted
matrix (A − τI)−1; hence, it makes sense for the extraction to impose the Petrov–
Galerkin conditions

(A − τI)−1v − (θ − τ)−1v ⊥ U1,

(A − τI)−∗w − (η − τ)−∗w ⊥ U2

for certain test spaces U1 and U2; see also [31, Sec. 3.2]. It is straightforward to
show that the choice v = Vℓc,w =Wℓd, U1 = (A− τI)∗Wℓ , and U2 = (A− τI)Vℓ
is equivalent with (3.11). For harmonic two-sided Rayleigh–Ritz one can take the
test spaces

U1 = (A − τI)∗(A − τI)∗Wℓ,
U2 = (A − τI)(A − τI)Vℓ

to obtain the equivalent conditions

(A − θI)v ⊥ (A − τI)∗Wℓ,
(A − η I)∗w ⊥ (A − τI)Vℓ

after somemanipulation. The former conditions lead to the generalized eigenvalue
problems

W∗
ℓ (A − τI)AVℓc = θW

∗
ℓ (A − τI)Vℓc,

V∗
ℓ (A − τI)∗A∗Wℓd = ηV

∗
ℓ (A − τI)∗Wℓd.

Since these are two conjugated generalized eigenvalue problems, it follows that
they are satisfied by ℓ quadruples (θ, η, c, d) with η = θ. If W∗

ℓ
(A − τI)Vℓ is

nonsingular, we receive the equivalent eigenvalue problems

(W∗
ℓ (A − τI)Vℓ)

−1W∗
ℓ (A − τI)AVℓc = θc,

(V∗
ℓ (A − τI)∗Wℓ)

−1V∗
ℓ (A − τI)∗A∗Wℓd = θd.
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Substituting the Arnoldi decompositions from (3.3) produces

H̃ℓc = θc and K̃ℓd = θd,

where H̃ℓ and K̃ℓ are rank-1 updates of Hℓ and Kℓ , defined by

H̃ℓ = Hℓ + ((Kℓ − τI)
∗W∗
ℓ+1Vℓ)

−1(Kℓ − τI)
∗W∗
ℓ+1vℓ+1h

∗
ℓ,

K̃ℓ = Kℓ + ((Hℓ − τI)
∗V∗
ℓ+1Wℓ)

−1(Hℓ − τI)
∗V∗
ℓ+1wℓ+1k

∗
ℓ,

and I is the identity matrix with an additional zero bottom row. Next, define

˜vℓ+1 = (I − Vℓ((Kℓ − τI)
∗W∗
ℓ+1Vℓ)

−1(Kℓ − τI)
∗W∗
ℓ+1)vℓ+1,

˜wℓ+1 = (I −Wℓ((Hℓ − τI)
∗V∗
ℓ+1Wℓ)

−1(Hℓ − τI)
∗V∗
ℓ+1)wℓ+1,

so that

AVℓ = Vℓ H̃ℓ + ˜vℓ+1h
∗
ℓ,

A∗Wℓ =Wℓ K̃ℓ + ˜wℓ+1k
∗
ℓ,

and H̃ℓ and K̃ℓ are the Rayleigh quotients

(3.12)

H̃ℓ = (W∗
ℓ (A − τI)Vℓ)

−1W∗
ℓ (A − τI)AVℓ

= ((Kℓ − τI)
∗W∗
ℓ+1Vℓ)

−1(Kℓ − τI)
∗W∗
ℓ+1AVℓ,

K̃ℓ = (V∗
ℓ (A − τI)∗Wℓ)

−1V∗
ℓ (A − τI)∗A∗Wℓ

= ((Hℓ − τI)
∗V∗
ℓ+1Wℓ)

−1(Hℓ − τI)
∗V∗
ℓ+1A

∗Wℓ .

As in Proposition 3.1, the eigenvalues of the H̃ℓ and K̃∗
ℓ
from this section coincide.

Proposition 3.2. If W∗
ℓ
(A − τI)Vℓ is nonsingular, then H̃ℓ and K̃∗

ℓ
in (3.12) are

similar.

Proof. The proof is comparable to the proof of Proposition 3.1, but with Wℓ
replaced by (A− τI)∗Wℓ . From (3.12) and A(A− τI) = (A− τI)A, it follows that

(W∗
ℓ (A − τI)Vℓ)H̃ℓ = W∗

ℓ (A − τI)AVℓ = K̃∗
ℓ (W

∗
ℓ (A − τI)∗Vℓ).

□

At this point we can compute Schur decompositions of H̃ℓ and K̃ℓ and continue
analogously to the previous section. Algorithm 3.3 summarizes the harmonic
two-sided Krylov–Schur method for the determination of approximate right and
left invariant subspaces.
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Algorithm 3.3 (Harmonic two-sided Krylov–Schur).
Input: Nonnormal A ∈ Cn×n, starting vectorsv1 andw1, minimum and maximum
dimensions m and ℓ, target τ.
Output: Vm+1, Wm+1, Hm, and Km such that AVm = Vm+1Hm ≈ VmHm and
A∗Wm =Wm+1Km ≈ WmKm.
1. for number of restarts do
2. Expand the Krylov decompositions to

AVℓ = VℓHℓ +vℓ+1h
∗
ℓ, A∗Wℓ = WℓKℓ +wℓ+1k

∗
ℓ,

using the Arnoldi process and update Mℓ+1 =W∗
ℓ+1Vℓ+1.

3. Compute QR = Kℓ − τI, and set p = (Q∗Mℓ+1, ℓ)−1Q∗Mℓ+1eℓ+1.
4. Compute QR = Hℓ − τI, and set q = (Q∗M∗

ℓ, ℓ+1)
−1Q∗M∗

ℓ+1eℓ+1.
5. Let Hℓ = Hℓ + ph∗

ℓ
and vℓ+1 = vℓ+1 − Vℓp.

6. Let Kℓ = Kℓ + qk∗
ℓ
andwℓ+1 =wℓ+1 −Wℓq.

7. Compute the Schur decompositions Hℓ = QSQ∗ and Kℓ = ZTZ∗.
8. Partition Q, S, Z, and T as in (3.7)
9. Set Vm = VℓQ1, Hm = S11, hm = Q∗

1bℓ .
10. SetWm =WℓZ1, Km = T11, km = Z∗1cℓ .
11. Set Mm = Z∗1MℓQ1.
12. Set Hm = Hm + (V∗

mvℓ+1)h
∗
m, vm+1 = (I − VmV∗

m)vℓ+1,
hm = ∥vm+1∥hm, vm+1 = vm+1/∥vm+1∥.

13. Set Km = Km + (W∗
mwℓ+1)k

∗
m,wm+1 = (I −WmW∗

m)wℓ+1,
km = ∥wm+1∥km,wm+1 =wm+1/∥wm+1∥.

14. if converged (see the discussion after Algorithm 3.2) then break
15. end

Notice that in step 3 of the algorithm we attempt to improve the accuracy
by using a QR factorization of Kℓ − τI, so that we essentially work with the
orthonormal basis Wℓ+1Q instead of Wℓ+1(K − τI). The approach of step 4 is
comparable, and Mℓ, ℓ+1 and Mℓ+1, ℓ denote the ℓ × (ℓ + 1) and (ℓ + 1) × ℓ
leading principal submatrices of Mℓ+1, respectively. In step 14 the same stopping
conditions from Section 3.3 can be used; however, in this case, using the Rayleigh
quotients ρ j in place of the Ritz values θ j and γj is recommended (cf. [80, Sec. 4]).

We have now seen the regular and harmonic two-sided Krylov–Schur al-
gorithms. In the following section we discuss the relation between these two
algorithms and the two-sided Lanczos algorithm.
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3.5 Relation with two-sided Lanczos

As discussed in Section 3.1, the two-sided Lanczos method and the two-sided
Arnoldi method are closely related. Specifically, if (3.3) is in upper-Hessenberg
form with hℓ = ∥hℓ ∥eℓ and kℓ = ∥kℓ ∥eℓ , and W∗

ℓ
Vℓ is nonsingular, then it can

be verified that H̃ and K̃ in (3.4) are also upper-Hessenberg. Now letW∗
ℓ
Vℓ = LU

be a decomposition into lower and upper triangular factors, and define the
biorthonormal bases V̂ℓ = VU−1 and Ŵℓ =WL−∗. Furthermore, let T = UH̃ℓU−1,
then from the proof of Proposition 3.1 it follows that

T = UH̃ℓU
−1 = L−1LUH̃ℓU

−1 = L−1 K̃∗
ℓ LUU

−1 = (L∗ K̃L−∗)∗.

Using this identity, (3.4) can be written as

(3.13)
AV̂ℓ = V̂ℓT + ˜vℓ+1h

∗
ℓU

−1,

A∗Ŵℓ = ŴℓT
∗ + ˜wℓ+1k

∗
ℓL

−∗,

where T is tridiagonal since both T = UH̃U−1 and T∗ = L∗ K̃L−∗ are upper-
Hessenberg. The decompositions in (3.13) coincide with two-sided Lanczos.
Assume for harmonic two-sided Arnoldi that W∗

ℓ
(A − τI)Vℓ is nonsingular, let

W∗
ℓ
(A − τI)Vℓ = LU be a decomposition into lower and upper triangular factors,

and define V̂ℓ = VℓU−1 and Ŵℓ = (A − τI)∗WℓL−∗. Then Proposition 3.2 can be
utilized to show that T = UH̃U−1 = (L∗ K̃L−∗)∗ is tridiagonal.

To summarize, two-sided Lanczos and two-sided Arnoldi generate bases for
the same subspaces, although two-sided Lanczos uses biorthonormal bases and
short recursions, while two-sided Arnoldi uses orthonormal bases and (full) re-
orthogonalization. The option to use short recursions with two-sided Lanczos
makes it a computationally appealing method in situations where the compu-
tational cost or the memory requirements for (full) reorthogonalization would
be prohibitive. On the other hand, using biorthonormal bases without (full) re-
orthogonalization may lead to numerical stability issues. Methods that have been
developed to handle these issues include look-ahead techniques, selective reortho-
gonalization, and the detection of spurious Ritz values, see for instance Bai et al.
[3, Section 4.4.4]. However, increases in memory capacity and computational
power of computer hardware have diminished the necessity of such methods, and
the modern approach is to favor (full) reorthogonalization when stability and ac-
curacy are crucial. Even though two-sided Lanczos can be implemented with full
re-biorthogonalization, Stewart [85] provides convincing reasons for preferring
orthogonal bases. For example, orthogonal bases tend to be less sensitive to per-
turbations than biorthogonal bases. Furthermore, if X and Y are biorthonormal,
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then the computation of

(I − XY ∗)a

for some vector amay incur a relative error up to γ∥XY ∗∥ϵ. Here, ϵ is the machine
accuracy, and γ is a constant that depends on the accuracy of X and Y . The error
bound implies that even if re-biorthogonalization is used, accuracy may be lost,
especially if ∥XY ∗∥ is large and if errors accumulate.

Two-sided Krylov–Schur uses orthonormal bases and applies only orthonor-
mal transformations to the bases. Some of the accuracy and stability issues are
avoided as a result, especially if two-sided Krylov–Schur is implemented with full
reorthogonalization. Unfortunately, we are not entirely clear of all stability issues
associated with oblique projections, or more specifically, the terms (W∗

ℓ
Vℓ)−1 for

standard extraction and (W∗
ℓ
(A − τI)Vℓ)−1 for harmonic extraction. The vectors

˜vℓ+1 and ˜wℓ+1 and the matrices H̃ℓ and K̃ℓ will depend on the previous matrix
inverses, and therefore the computed Schur decompositions as well.

As it turns out, it is possible to avoid the explicit use of (W∗
ℓ
Vℓ)−1 and improve

the accuracy of the computations in Algorithms 3.2 and 3.3. For simplicity we
consider only two-sided Rayleigh–Ritz extraction and note that the results can be
adapted to two-sided harmonic Ritz. Suppose, for the moment, that we are given
the orthonormal matrices Q and Z. The objective is to obtain the decompositions
in (3.9) from (3.6) without using (W∗

ℓ
Vℓ)−1. The update V̂1 = VℓQ1 can clearly

be computed without using a matrix inverse; now

AV̂1 = V̂1S11 + ˜vℓ+1˜h
∗
1

= V̂1Q
∗
1H̃ℓQ1 + (I − Vℓ(W

∗
ℓVℓ)

−1W∗
ℓ )vℓ+1h

∗
ℓQ1

= V̂1Q
∗
1HℓQ1 + VℓQ1Q

∗
1(W

∗
ℓVℓ)

−1W∗
ℓvℓ+1h

∗
ℓQ1

+ (I − Vℓ(W
∗
ℓVℓ)

−1W∗
ℓ )vℓ+1h

∗
ℓQ1

= V̂1Q
∗
1HℓQ1 + (I − VℓQ2Q

∗
2(W

∗
ℓVℓ)

−1W∗
ℓ )vℓ+1h

∗
ℓQ1.

It is straightforward to verify that Ĥ = Q∗
1HℓQ1 and

ˆvℓ+1ˆh
∗
1 = (I − VℓQ2Q

∗
2(W

∗
ℓVℓ)

−1W∗
ℓ )vℓ+1h

∗
ℓQ1.

On the other hand,

AVℓQ1 − VℓQ1Q
∗
1HℓQ1 = VℓQ2Q

∗
2HℓQ1 +vℓ+1h

∗
ℓQ1

= [Vℓ vℓ+1]

[
Q2

1

] [
Q∗

2

1

] [
Hℓ
h∗
ℓ

]
Q1.
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It follows that it is possible to determine ˆvℓ+1ˆh∗1 by computing a rank-1 approxi-
mation ab∗ of[

Q∗
2

1

] [
Hℓ
h∗
ℓ

]
Q1,

with ∥a∥ = 1, and setting ˆh1 = b and

ˆvℓ+1 = [Vℓ vℓ+1]

[
Q2

1

]
a.

An alternative is to use the relation

(I − VℓQ2Q
∗
2(W

∗
ℓVℓ)

−1W∗
ℓ )vℓ+1∥h

∗
ℓQ1∥

2 = (VℓQ2Q
∗
2HℓQ1 +vℓ+1h

∗
ℓQ1)Q

∗
1hℓ

to determine ˆvℓ+1, which is particularly appealing from a computational point of
view. In our tests we found that the latter approach was faster and provided the
best numerical performance. The vector ˜vℓ+1 is no longer needed with the above
approaches, and its computation can be omitted. To summarize, the inverse of
W∗
ℓ
Vℓ can be bypassed once Q is known.
Computing Q without using (W∗

ℓ
Vℓ)−1 is the remaining step. It is possible to

avoid the explicit use of the inverse with the QZ decomposition

W∗
ℓ AVℓ = PSαQ

∗ and W∗
ℓVℓ = PSβQ

∗

of the matrix pencil (W∗
ℓ
AVℓ,W∗

ℓ
Vℓ). Here P and Q are orthonormal, Sα and Sβ

are upper triangular, and S = S−1β Sα. The QZ decomposition can be reordered if
necessary. In our tests we found that the QZ approach did not improve the accuracy
with sufficient significance and reliability to justify the increased computational
cost.

In this section we have investigated the relation between two-sided Lanczos
and two-sided Krylov–Schur and argued how most of the problems with the
former are solved by a proper implementation of the latter.

3.6 Error bounds for Ritz values and Ritz vectors

In previous sections we have discussed the computation of Ritz values, Ritz vectors,
and their harmonic counterparts. In this section we investigate the convergence
of Ritz values and Ritz vectors with respect to the convergence of the search space
to an invariant subspace. We will first focus on the convergence of Ritz values
and address the convergence of the Ritz vectors later.
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To investigate the convergence of a Ritz value θ to an eigenvalue of A, we
could invoke, for instance, the Bauer–Fike theorem (cf., e.g., [78, Thm. 3.6]).
The Bauer–Fike theorem is a key result in perturbation theory, and below we
present a new two-sided version.

Theorem 3.3 (Two-sided Bauer–Fike). Suppose that A is diagonalizable such that

A = XΛX−1.

Let (θ, v,w) be an approximate eigentriplet of A with ∥v ∥ = ∥w ∥ = 1, and define
the residuals

r = Av − θv and s∗ =w∗A − θw∗.

Assumew∗v , 0 and define κθ = |w∗v |−1. If the condition number of X is denoted
by κ(X), then there exists an eigenvalue λ of A such that

|λ − θ | ≤
√
κ(X)κθ ∥r∥ ∥s∥.

Proof. If θ is an eigenvalue of A the result is clear. Otherwise A− θI is nonsingular
and

|w∗v | = |s∗(A− θI)−2r | = |s∗X(Λ− θI)−2X−1r | ≤ κ(X) ∥r∥ ∥s∥ ∥(Λ− θI)−2∥.

Rearranging the terms gives

min
µ∈Λ(A)

|µ − θ |2 ≤ κ(X)κθ ∥r∥ ∥s∥.

□

In particular, if max{∥r∥, ∥s∥} → 0, then θ converges to some eigenvalue λ of A,
and κθ converges to the condition number κ(λ) of λ. Theorem 3.3 can be used
with Ritz vectors v andw to match Ritz values to eigenvalues of A one at a time.

An alternative approach for studying the convergence of Ritz values is through
Elsner’s theorem [82, p. 38] .

Theorem 3.4 (Elsner [82]). Let the eigenvalues of B be λ1, . . . , λn and let the
eigenvalues of B + E be θ1, . . . , θn. Then there is a permutation j1, . . . , jn of the
integers 1, . . . , n such that

|λ i − θ ji | ≤ 4(∥B∥ + ∥B + E∥)1−1/n∥E∥1/n (i = 1, . . . , n).
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Hence, if the eigenvalues of B are in the spectrum of A and the eigenvalues of
B + E are the computed Ritz values, then θ j1 , . . . , θ jn converge to λ1, . . . , λn,
when ∥E∥ → 0. An advantage of using Elsner’s theorem is that we can match
multiple θs to eigenvalues simultaneously.

At this point it is helpful to introduce notation that allows the uniform treat-
ment of the remainder of this section. Let

V =
[
V1 V2 V3

]
and W =

[
W1 W2 W3

]
be full-rank orthonormal matrices, and introduce the shorthand notation V1,2
and W1,2 for the first two blocks of V and W respectively. In two-sided Krylov–
Schur, the columns of V1 and W1 could, for instance, correspond to either the
basis vectors retained after truncation or to a subset thereof. The next step is to
make V andW biorthonormal, which is where the following proposition comes
into play.

Proposition 3.5. IfW∗
1V1 andW∗

1,2V1,2 are nonsingular, then the 3 × 3 block LU
decomposition ofW∗V is given by

L =

⎡⎢⎢⎢⎢⎢⎣
W∗

1V1
W∗

2V1 W∗
2 (I − P1)V2

W∗
3V1 W∗

3 (I − P1)V2 W∗
3 (I − P1,2)V3

⎤⎥⎥⎥⎥⎥⎦ ,
U =

⎡⎢⎢⎢⎢⎢⎣
I (W∗

1V1)
−1W∗

1V2 (W∗
1V1)

−1W∗
1V3

I (W∗
2 (I − P1)V2)−1W∗

2 (I − P1)V3
I

⎤⎥⎥⎥⎥⎥⎦ ,
where P1 = V1(W∗

1V1)
−1W∗

1 and P1,2 = V1,2(W∗
1,2V1,2)

−1W∗
1,2.

Proof. Suppose for the moment thatW∗
2 (I − P1)V2 is nonsingular so that U is well

defined. For most of the blocks it is straightforward to verify by direct computation
that LU =W∗V. The only difficult block is

W∗
3V3 =W∗

3 P1V3+W
∗
3 (I−P1)V2(W

∗
2 (I−P1)V2)

−1W∗
2 (I−P1)V3+W

∗
3 (I−P1,2)V3.

To show that equality holds, it suffices to show that P1,2 = Q, where Q is the
projector defined by

Q = P1 + (I − P1)V2(W
∗
2 (I − P1)V2)

−1W∗
2 (I − P1).

From its definition we see that the range of Q must be a subset of the range
of V1,2, that is R(Q) ⊂ R(V1,2), and likewise R(Q∗) ⊂ R(W1,2). Furthermore,
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notice that QV1 = V1, QV2 = V2, Q∗W1 = W1, and Q∗W2 = W2. Since a projector
is uniquely defined by its column space and its row space, it follows from [85,
Thm. 2.2] that Q = P1,2.

To prove the Ansatz thatW∗
2 (I − P1)V2 is nonsingular, let L1,2 and U1,2 be the

upper-left 2 × 2 blocks of L and U so that

det(W∗
1,2V1,2) = det(L1,2U1,2) = det(L1,2) det(U1,2)

= det(W∗
1V1) det(W

∗
2 (I − P1)V2) , 0.

□

Suppose thatW∗
1V1 andW∗

1,2V1,2 are nonsingular and that L and U are given by
Proposition 3.5; then the matrices defined by

Ṽ = VU−1 =
[
Ṽ1 Ṽ2 Ṽ3

]
and W̃ =WL−∗ =

[
W̃1 W̃2 W̃3

]
are biorthonormal. Furthermore,

Ṽ1 = V1, W̃∗
1 = (W∗

1V1)
−1W∗

1, I − V1(W
∗
1V1)

−1W∗
1 = I − Ṽ1W̃

∗
1,

and

I − V1,2(W
∗
1,2V1,2)

−1W∗
1,2 = I − Ṽ1,2W̃

∗
1,2 = Ṽ3W̃

∗
3 .

Assume that

S = (W∗
1,2V1,2)

−1W∗
1,2AV1,2 and T = (V∗

1,2W1,2)
−1V∗

1,2A
∗W1,2

are upper triangular; then an argument similar to the one at the beginning of
Section 3.5 shows that

W̃∗
1,2AṼ1,2 = U1,2SU

−1
1,2 = (L∗1,2TL

−∗
1,2)

∗

is block diagonal, with

W̃∗
1,2AṼ1,2 =

[
S11

S22

]
=

[
(W∗

1V1)
−1T∗

11(W
∗
1V1)

(W∗
2 (I − P1)V2)−1T∗

22(W
∗
2 (I − P1)V2

]
.

Finally, we assume for the remainder of this section that rank(X) ≤ rank(V1), and
we have the following definition.
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Definition 3.6. Let X be an invariant subspace of A such that AX ⊆ X , and
suppose that [X X⊥] is orthonormal, X is a basis of X , and B is such that AX =
XB. If the spectra of B and X∗

⊥AX⊥ are disjoint, then (B, X) is called a simple
orthonormal eigenpair of A.

Using the new notation, we are ready to state a generalization of Jia and
Stewart [43, Thm. 4.1], which allows the application of Elsner’s theorem to two-
sided Arnoldi. The value δ can be interpreted as a measure of the angle between
subspaces and will be analyzed in Theorem 3.11 and Proposition 3.13.

Theorem 3.7. Let (B, X) be a simple orthonormal eigenpair of A. Define Z = W̃∗
1X

and orthonormalize the columns of Z by setting

Z̃ = ZQ, where Q = (Z∗Z)−1/2.

Then there exists a matrix E satisfying

∥E∥ = ∥W̃∗
1 A(I − Ṽ1W̃

∗
1 )XQ∥,

such that (Q−1BQ, Z̃) is an eigenpair of S11 − E. Furthermore, if
δ = ∥(I − Ṽ1W̃∗

1 )X ∥ < 1, then

∥E∥ ≤ ∥W̃∗
1 A∥

δ

1 − δ
.

Proof. For the first part of the proof we multiply AX = XB from the left by W̃∗
1

and obtain

W̃∗
1 A(Ṽ1W̃

∗
1 + (I − Ṽ1W̃

∗
1 ))X = W̃∗

1XB.

Since W̃∗
1 AṼ1 = S11, we can rearrange the terms to get

S11W̃
∗
1X − W̃∗

1XB = −W̃∗
1 A(I − Ṽ1W̃

∗
1 )X,

which we use to define the residual

R = S11Z̃ − Z̃Q−1BQ = − W̃∗
1 A(I − Ṽ1W̃

∗
1 )XQ

and the perturbation matrix E = RZ̃∗. Then S11 − E satisfies

(S11 − E)Z̃ = Z̃Q−1BQ

and

∥E∥ = ∥R∥ = ∥W̃∗
1 A(I − Ṽ1W̃

∗
1 )XQ∥,
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which concludes the first part of the proof. For the second part of the proof we
use the relation

∥Q∥ = σ−1
min(Z) = σ

−1
min(Ṽ1W̃

∗
1X).

To compute the smallest singular value of Ṽ1W̃∗
1X , observe that

1 ≤ min
∥z ∥=1

(∥Ṽ1W̃
∗
1Xz∥ + ∥(I − Ṽ1W̃

∗
1 )Xz∥).

Therefore,

σmin(Ṽ1W̃
∗
1X) = min

∥z ∥=1
∥Ṽ1W̃

∗
1Xz∥ ≥ 1 − max

∥z ∥=1
∥(I − Ṽ1W̃

∗
1 )Xz∥ = 1 − δ,

and

∥E∥ ≤ ∥W̃∗
1 A∥ ∥(I − Ṽ1W̃

∗
1 )∥ ∥Q∥ ≤ ∥W̃∗

1 A∥
δ

1 − δ
.

□

The key insight from Theorem 3.7 is that, under mild conditions, there exists a
matrix E such that the eigenvalues of Z̃∗(S11− E)Z̃ = Q−1BQ are eigenvalues of A.
By subsequently applying Theorem 3.4, the following corollary may be obtained.

Corollary 3.8. Assume r = rank(X) = rank(V1), let the eigenvalues of B be λ1,
. . . , λr, and let the eigenvalues of S11 be θ1, . . . , θr. Then there are integers j1,. . . ,jr
such that

|λ i − θ ji | ≤ 4(2∥(W∗
1V1)

−1∥ ∥A∥ + ∥E∥)1−1/r∥E∥1/r (i = 1, . . . , r).

Hence, if ∥(W∗
1V1)

−1∥ is asymptotically uniformly bounded and ∥E∥ → 0, then
there are Ritz values that converge to eigenvalues of A. In practice, the assumption
on (W∗

1V1)
−1 means that the corollary cannot be applied to defective eigenvalues.

The next proof relates the separation between Ritz values and eigenvalues to
the convergence of the subspace V1 to the invariant subspace X of A. The proof
uses the following definition of the separation operator.

Definition 3.9. The separation between an n× n matrix N and an m ×m matrix
M is defined by

sep(N, M) = min
∥Z ∥=1

∥NZ − ZM∥.

For more information on the separation operator, see, for example, [82, p. 256].
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Theorem 3.10. Let (B, X) be a simple orthonormal eigenpair of A; then

sep(Ṽ1S11W̃
∗
1, B) ≤

∥Ṽ1W̃∗
1 AṼ3W̃

∗
3X ∥

∥Ṽ1W̃∗
1X ∥

.

Proof. Since AX = XB we have that

W̃∗
1,2AṼW̃

∗X = W̃∗
1,2XB.

Rearranging the terms gives

(3.14)

[
S11

S22

] [
W̃∗

1X

W̃∗
2X

]
−

[
W̃∗

1X

W̃∗
2X

]
B = −

[
W̃∗

1 AṼ3W̃
∗
3X

W̃∗
2 AṼ3W̃

∗
3X

]
.

From the first block row we see that

S11W̃
∗
1X − W̃∗

1XB = −W̃∗
1 AṼ3W̃

∗
3X,

and hence

(Ṽ1S11W̃
∗
1 )Ṽ1W̃

∗
1X − Ṽ1W̃

∗
1XB = −Ṽ1W̃

∗
1 AṼ3W̃

∗
3X.

Using the definition of the separation operator we can now derive the bound

sep(Ṽ1S11W̃
∗
1, B)∥Ṽ1W̃

∗
1X ∥ ≤ ∥Ṽ1W̃

∗
1 AṼ3W̃

∗
3X ∥,

which concludes the proof. □

Theorem 3.10 tells us that the separation between Ṽ1S11W̃∗
1 and Bmust go to zero

as the span of X becomes contained in the span of V1,2; this is true in particular
if V1 converges to X .

It is instructive to determine what can be said about ∥(I − P1)X ∥ if it is known
that ∥(I − P1,2)X ∥ → 0. Saad provides a bound in the case of Hermitian matrices;
see, for example, [78, Thm 4.6]. Saad’s theorem was generalized by Stewart for
general matrices in [83]. In [31, Thm. 3] the theorem is further generalized to a
two-sided result, but using ∥[W̃2 W̃3]

∗X ∥ instead of ∥(I − P1)X ∥, and restricted
by the assumption that X is a vector. We therefore state a new two-sided Saad
type theorem.

Theorem 3.11. Let (B, X) be a simple orthonormal eigenpair of A. If
sep(Ṽ2S22W̃∗

2, B) > 0, then

∥(I − Ṽ1W̃
∗
1 )X ∥ ≤

∥Ṽ2W̃∗
2 AṼ3W̃

∗
3X ∥

sep(Ṽ2S22W̃∗
2, B)

+ ∥Ṽ3W̃
∗
3X ∥

≤

(
1 +

∥Ṽ2W̃∗
2 A∥

sep(Ṽ2S22W̃∗
2, B)

)
∥Ṽ3W̃

∗
3X ∥.
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Proof. From the second block row of (3.14) it follows that

S22W̃
∗
2X − W̃∗

2XB = −W̃∗
2 AṼ3W̃

∗
3X.

Using the fact that Ṽ∗
2W̃2 = I, we can write

(Ṽ2S22W̃
∗
2 )Ṽ2W̃

∗
2X − Ṽ2W̃

∗
2XB = −Ṽ2W̃

∗
2 AṼ3W̃

∗
3X,

so that

sep(Ṽ2S22W̃
∗
2, B)∥Ṽ2W̃

∗
2X ∥ ≤ ∥Ṽ2W̃

∗
2 AṼ3W̃

∗
3X ∥.

Therefore, we acquire the bound

∥(I − Ṽ1W̃
∗
1 )X ∥ = ∥Ṽ2W̃

∗
2X + Ṽ3W̃

∗
3X ∥ ≤

∥Ṽ2W̃∗
2 AṼ3W̃

∗
3X ∥

sep(Ṽ2S22W̃∗
2, B)

+ ∥Ṽ3W̃
∗
3X ∥,

which concludes the proof. □

If there exists a positive constant α such that

sep(Ṽ2S22W̃
∗
22, B) ≥ α > 0

as ∥(I − P1,2)X ∥ → 0, then the bound

∥(I − P1)X ∥ ≲

(
1 +

∥Ṽ2W̃∗
2 A∥

α

)
∥(I − P1,2)X ∥

is asymptotically satisfied and ∥(I − P1)X ∥ → 0 when ∥(I − P1,2)X ∥ → 0. The
intuitive interpretation of the lower bound α is that there must be a gap between
the spectra of B and S22 as V1 and S11 converge.

Applying Theorems 3.7, 3.10, and 3.11 to two-sided Krylov–Schur yields the
following bounds.

Corollary 3.12. Suppose the relations in (3.7) are satisfied with V1 = V̂1, V2 = V̂2,
W1 = Ŵ1, andW2 = Ŵ2; then the bound in Theorem 3.7 can be written as

∥E∥ ≤ ∥P1∥ ∥˜k1∥ ∥(I − P1,2)XQ∥,

the bound in Theorem 3.10 as

sep(Ṽ1S11W̃
∗
1, B) ≤ ∥P1∥ ∥˜k1∥

∥(I − P1,2)X ∥
∥P1X ∥

,

and the bound in Theorem 3.11 as

∥(I − P1)X ∥ ≤

(
1 +

∥P1,2 − P1∥ ∥˜k2∥

sep(Ṽ2S22W̃∗
2, B)

)
∥(I − P1,2)X ∥.
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The corollary shows that bounds of the form ∥ṼjW̃∗
j ∥ ∥

˜k j∥ are obtained instead

of ∥ṼjW̃∗
j A∥ when two–sided Krylov–Schur is used. This is an attractive result

since ∥˜k1∥ can be expected to go to zero as V1 converges to X .
It is possible to bound the norm of the oblique projections from the present

section in terms of more common orthogonal projections; see, for example, the
following proposition.

Proposition 3.13. Suppose that X , V, andW have orthonormal columns and that
W∗V is nonsingular; then for the 2-norm we have

∥(I − VV∗)X ∥2 ≤ ∥(I − V(W∗V)−1W∗)X ∥2 ≤ ∥(W∗V)−1∥2 ∥(I − VV∗)X ∥2,

and for the Frobenius norm

∥(I−VV∗)X ∥F ≤ ∥(I−V(W∗V)−1W∗)X ∥F ≤

√
1 + ∥(W∗V)−1∥2F ∥(I−VV∗)X ∥F .

Proof. Define Z = (I − VV∗)X and P = V(W∗V)−1W∗; then

∥Z∥2F = ∥(I − VV∗)(I − P)X ∥2F
= tr(X∗(I − P)∗(I − VV∗)(I − P)X)

= ∥(I − P)X ∥2F − ∥V∗(I − P)X ∥2F ≤ ∥(I − P)X ∥2F

and

∥(I−P)X ∥2F = ∥(I−P)Z∥2F = ∥Z−PZ∥2F = ∥Z∥2F+∥PZ∥
2
F ≤ ∥Z∥2F (1+∥(W

∗V)−1∥2F ).

For the 2-norm we give a simplified and block version of the first part of the proof
found in Chaturantabut and Sorensen [15, Lem. 3.2]. For a nontrivial projector
P it holds that ∥ I − P∥2 = ∥P∥2; see, for example, Szyld [87]. Therefore

∥Z∥2 = ∥(I − VV∗)(I − P)X ∥2 ≤ ∥(I − P)X ∥2

and

∥(I− P)X ∥2 = ∥(I− P)Z∥2 ≤ ∥ I− P∥2 ∥Z∥2 = ∥P∥2 ∥Z∥2 ≤ ∥(W∗V)−1∥2 ∥Z∥2.

□

Consequently, if ∥(W∗V)−1∥ is sufficiently small, then the norms

∥(I − V(W∗V)−1W∗)X ∥ and ∥V(W∗V)−1W∗X ∥

can be seen as a generalization of sin(X, V) and cos(X, V), respectively; see Fig-
ure 3.1 for an illustration.
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v
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Figure 3.1: Consider the approximation v to x, the projection p = v (w∗v )−1w∗x,
and the complementary part e = x − p. In the left diagram the angle between v and
w is small and ∥p∥ ≈ ∥v∗x∥ = cos(x, v ) and ∥e∥ ≈ ∥(I −vv∗)x∥ = sin(x, v ). In the
right diagram the angle between v andw is large and ∥p∥ and ∥e∥ are no longer
satisfactory approximations to the cosine and sine.

3.7 Two-sided distance properties

In the previous section we have considered the convergence of subspaces to
invariant subspaces. The focus of this section is on the minimum distance between
a given matrix A and a matrix with given invariant subspaces. Given a subspace V ,
Noschese and Reichel [62] consider the problem of finding the matrix M closest
to A satisfying

(3.15) MV ⊆ V .

In the two-sided case we impose the additional constraint

(3.16) M∗W ⊆ W

for a given subspace W . Alternatively, this is the problem of finding the backward
error E = A−M, where the norm of E can be seen as a measure for the quality of
the subspaces as approximate invariant subspaces. Consider the following well-
known theorem [46, Main Thm.].

Theorem 3.14 (Kahan, Parlett, and Jiang [46]). Let A be an n × n matrix, and
let two n × m matrices V and W having orthonormal columns be given. Suppose
thatW∗V is nonsingular. Let

R = AV − VC, S∗ = W∗A − DW∗,

where C and D are Rayleigh quotients

C = (W∗V)−1W∗AV, D =W∗AV(W∗V)−1.

Then the solution E of

(A − E)V = VC and W∗(A − E) = DW∗



52 3. Krylov–Schur-type restarts for the two-sided Arnoldi method

that simultaneously minimizes both

∥E∥2 = min
E

∥E∥2 = max{∥R∥2, ∥S∥2}

and

∥E∥F = min
E

∥E∥F =
√
∥R∥2F + ∥S∥2F

is given by

E = RV∗ +WS∗.

Using the theorem we readily find the following result.

Corollary 3.15. Suppose that V andW are orthonormal bases of the subspaces V
and W , respectively and thatW∗V is nonsingular. Then, the matrix M closest to A
that satisfies

MV ⊆ V and M∗W ⊆ W

is given by

M = A − (I − V(W∗V)−1W∗)AVV∗ +WW∗A(I − V(W∗V)−1W∗).

Furthermore, if two-sided Arnoldi is used to compute V,W, H̃, and K̃ so that

R = AV − VH̃ = ˜v˜h∗ and S = A∗W −WK̃ = ˜w˜k∗,

where ˜v , ˜w , ˜h, and ˜k are as in (3.8), then

∥E∥2 = max{∥˜v ∥ ∥˜h∥, ∥˜w ∥ ∥˜k∥} and ∥E∥F =
√
∥˜v ∥2∥˜h∥2 + ∥˜w ∥2∥˜k∥2

for E = A − M.

The matrix M from Corollary 3.15 satisfies the additional constraint

W∗(A − zI)V =W∗(M − zI)V

for all scalars z. This kind of shift-invariance allows us to interpret ∥E∥2 and ∥E∥F
as a backward error for the approximation of pseudospectra in Section 3.8.2,
where we compute

σmin(W
∗(A − zI)V)
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for a large number of complex shifts z near a region of interest. The matrix M is
in general not of low rank, and instead we might be interested in the two-sided
Arnoldi approximation

Am = V(W∗V)−1W∗AV(W∗V)−1W∗ = VH̃(W∗V)−1W = V(W∗V)−1 K̃∗W∗,

which is the unique rank-m = rank(W∗AV) matrix satisfying

AmV ⊆ V, A∗mW ⊆ W, and W∗AV =W∗AmV.

An alternative for the singular value problem is to consider the problem of
finding the matrix N closest to A satisfying

NV ⊆ W and N∗W ⊆ V,

as opposed to M satisfying (3.15) and (3.16). Noschese and Reichel [62, Sec. 3]
show that

N = (I −WW∗)A(I − VV∗) +WW∗AVV∗

minimizes the distance to A with

∥A − N ∥2F = ∥AV ∥2F + ∥A∗W∥2F − 2∥W∗AV ∥2F .

As before, N satisfies the additional constraint

W∗(A − zI)V =W∗(N − zI)V

for any scalar z, making ∥A − N ∥F another backward error. The unique rank-m
approximation Bm satisfying

BmV ⊆ W, B∗mW ⊆ V, and W∗AV = W∗BmV

is given by the two-sided Arnoldi approximation

Bm =WW∗AVV∗ =W(W∗V)H̃V∗ =WK̃∗(W∗V)V∗.

The proposition below gives the distance between A and Bm; the proof closely
follows the arguments in [62, Prop. 3.3] but uses general left-orthonormal V and
W.

Proposition 3.16 (Generalization of [62, Prop. 3.3]). Let V andW have orthonor-
mal columns and define the matrix Bm =WW∗AVV∗; then

∥A − Bm∥
2
F = ∥A∥2F − ∥Bm∥

2
F .
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Proof. Using the cyclic property of the trace, we obtain

∥A −WW∗AVV∗∥2F = tr(A∗A − A∗WW∗AVV∗ − VV∗A∗WW∗A + VV∗A∗WW∗AVV∗)

= tr(A∗A) − tr(V∗A∗WW∗AV) − tr(V∗A∗WW∗AV)

+ tr(V∗A∗WW∗AV)

= ∥A∥2F − ∥Bm∥
2
F .

□

We have given a two-sided analogue of Noschese and Reichel’s result for (right)
invariant subspaces. The bounds in Corollary 3.15 are particularly elegant and
efficient to compute in the context of two-sided Krylov–Schur. Distances in the
case of invariant singular subspaces are efficiently computable as well, assuming
that the Frobenius norm is used and A is explicitly available. To summarize, the
distance properties from this section can be used to gain insight into the quality
of approximate invariant subspaces.

3.8 Applications and numerical experiments

3.8.1 Eigenvalue condition numbers

Suppose we wish to compute the best-conditioned eigenvalues of a nonnormal
matrix A, which is effectively the opposite of the goal of the sensitive pole algo-
rithm [74]. For instance, A might be constructed from uncertain data making
the best-conditioned eigenvalues the most reliable ones. Alternatively, one may
be focused on the least sensitive eigenvalues of some A = A(p0) obtained from
a parameterized problem for a specific set of parameters given by p0. Since the
eigenvalue condition numbers are essential quantities, the choice of a two-sided
method over a one-sided method may be appropriate.

In Table 3.1 we compare one-sided and two-sided Krylov–Schur for the com-
putation of the best-conditioned eigenvalues. That is, we are looking for an ap-
proximation θ to an eigenvalue λ and an approximation κθ to κ(λ), where κ(λ)
is as small as possible. We recognize that it may be more useful in practice to
restrict the search to the best-conditioned eigenvalue near a target, but we make
no such restriction here for the sake of simplicity. We measure the relative errors

errλ =

����λ − θλ ���� and errκ(λ) =

���� κ(λ) − κθκ(λ)

���� ,
as well as the number of matrix-vector products executed before the algorithms
are terminated. We use (3.10) as a stopping criterion and terminate one-sided
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and two-sided Krylov–Schur when

∥Av − θv ∥
|θ |

≤ ϵ210 and
max{∥Av − θv ∥, ∥w∗A − θw∗∥}

|θw∗v |
≤ ϵ210

respectively, where the θ’s are Ritz values, where v and w are right and left
Ritz vectors with unit norm, and where ϵ is the machine accuracy. For example,
ϵ ≈ 2.22 · 10−16 and ϵ210 ≈ 2.27 · 10−13 for IEEE double precision floating point
numbers. We run the algorithms with minimum subspace dimension m = 25 and
maximum subspace dimension ℓ = 50 by default, and with m = 50 and ℓ = 100
for problems marked by an asterisk (*). All the matrices, except randn, are from a
test matrix collection of non-Hermitian eigenvalue problems [2] and are balanced
first [16]. The matrix randn is generated using the identically named MATLAB
function, and we use the same function to generate random starting vectors.

Table 3.1: Median results over 1000 runs with different random initial vectors for
computing the best-conditioned eigenvalues of nonnormal matrices with one-sided
and two-sided Krylov–Schur.

One-sided Two-sided

Name n κ(λ) errλ errκ(λ) MVs errλ errκ(λ) MVs

randn* 1024 3.34 1.25e + 00 9.82e − 01 800 1.01e − 14 3.97e − 14 1100

bfw782a* 782 1.00 4.00e − 02 9.96e − 01 100 3.55e − 15 3.09e − 14 200

ck656 656 1.02 9.75e − 01 8.70e − 01 1275 4.84e − 16 3.35e − 03 50

pde900 900 4.04 2.35e − 01 1.00e + 00 1575 2.67e − 15 1.89e − 14 125

rdb1250l 1250 1.05 9.55e − 01 8.51e − 01 400 7.20e − 15 3.69e − 15 150

olm1000 1000 1.00 1.00e + 00 9.94e − 01 3300 2.99e − 14 2.94e − 14 7525

qh1484 1484 1.00 1.00e + 00 8.77e − 01 825 2.87e − 04 4.27e − 10 75

rdb1250 1250 1.01 9.88e − 01 8.41e − 01 350 5.32e − 15 2.65e − 15 150

qc2534 2534 1.01 1.41e + 00 1.00e + 00 10300 7.36e − 15 2.42e − 15 75

af23560* 23560 1.10 9.37e − 01 9.96e − 01 2700 4.98e − 14 6.80e − 07 350

The results in Table 3.1 show that two-sided Krylov–Schur computes more
accurate approximations to both λ and κ(λ) in every case, and does so using
fewer matrix-vector products in seven out of 10 cases. In particular, the total num-
ber of matrix-vector products used by one-sided Krylov–Schur is 21625, versus
9800 used by two-sided Krylov–Schur. The high relative error of the one-sided
approximations can be explained by the fact that one-sided Krylov–Schur con-
verges to incorrect eigenvalues, a problem not shared by its two-sided counterpart.
Evidently, two-sided Krylov–Schur benefits from the improved accuracy of the
two-sided condition number estimates and the two-sided Rayleigh quotient.
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3.8.2 Pseudospectra

When studying nonnormal matrices, computing pseudospectra rather than eigen-
values and condition numbers may be more insightful [89]. In particular, pseudo-
spectra provide more detailed information regarding the behavior of the eigen-
values under matrix perturbations in the nonnormal case. Indeed, one possible
definition of the ε-pseudospectrum of A that clearly shows its relation with matrix
perturbations is

Λε(A) = {z ∈ C : z ∈ Λ(A + E) for some E with ∥E∥ < ε},

where Λ(A + E) denotes the spectrum of A + E. An alternate definition that is
more fitting for the computation of pseudospectra is

Λε(A) = {z ∈ C : σmin(A − zI) < ε}.

Ergo, one can simply compute σmin(A − zI) for z ∈ C and plot ε-level curves;
unfortunately, doing so for many grid points and large A is generally time- and
memory-consuming. One method to improve performance is to use one-sided
Krylov–Schur to obtain

AVm = Vm+1Hm,

with orthonormal Vm+1, and compute the approximation

(3.17)
σmin(A − zI) ≈ σmin((A − zI)Vm)

= σmin(V
∗
m+1(A − zI)Vm) = σmin(Hm − zI);

see Wright and Trefethen [93]. Since the right and left singular subspaces differ
for nonnormal matrices, it seems natural to project onto a subspace distinct from
Vm+1 = span{Vm+1}. At the same time, a shift-invariant subspace is ideal if the
goal is to reduce computational effort. This suggests that the left Krylov subspace
Wm belonging to A∗ may be an excellent choice, especially if Wm approximates
an invariant subspace belonging to the eigenvalues of interest. Hence, by using
two-sided Krylov–Schur we can compute the approximation

σmin(A − zI) ≈ σmin(W
∗
m(A − zI)Vm)

or, ifwm+1 and vm+1 have also been computed,

(3.18) σmin(A − zI) ≈ min{σmin(W
∗
m+1(A − zI)Vm), σmin(W

∗
m(A − zI)Vm+1)}.
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The key idea is to use the shift-invariant subspaces Vm = Km(A, v1) and Wm =

Km(A∗,w1) to compute the smallest singular values in a region surrounding the
eigenvalues of interest by imposing the Galerkin conditions

(A − zI)Vmc − θWmd ⊥ Wm,

(A − zI)∗Wmd − θVmc ⊥ Vm

for a large number of complex shifts z. Furthermore, the two-sided approach is
symmetric in the sense that the same results are obtained if A is replaced by A∗

and the starting vectors are swapped, which is not the case for the one-sided
approximation.

We compute the pseudospectra of three disparate matrices in specific regions.
The first matrix, randn, is generated using the identically named MATLAB func-
tion. The second and third matrices, rdb800l and pipe, are taken from Wright
and Trefethen [93, Sec. 5]. For the Krylov–Schur algorithms we use minimum
dimension m = 25 and maximum dimension ℓ = 50. Table 3.2 lists additional
details, including the number of restarts, which are hand-picked to achieve near
optimal results. Because of the conditioning of the eigenvalues, we recompute
V∗
m+1AVm and W∗

m+1AVm before computing the pseudospectra, as opposed to
working with (W∗

m+1Vm+1)Hm and (V∗
m+1Wm+1)Km.

Table 3.2: The dimension size, region of interest, target, use of harmonic extraction,
and number of restarts (#RS) for one-sided and two-sided Krylov–Schur for each
matrix.

Name n Region Target Harmonic #RS-1 #RS-2

randn 1024 [−27, −17] × [17, 25] −22 + 21i Yes 100 25

rdb800l 800 [−1.1, 1.1] × [−0.25, 2.75] +1.25i No 125 50

pipe 402 [−0.15, 0.05] × [−0.05, 0.05] +0.05 Yes 1500 1000

The pseudospectra of the test matrices can be seen in Figure 3.2, and their
approximations with one-sided and two-sided Krylov–Schur in Figures 3.3 and
3.4, respectively. The latter two figures also include heat maps of the quantity

(3.19) z ↦→ log10

����σmin(A − zI) − θ
σmin(A − zI)

���� ,
where θ is the approximation from either (3.17) for one-sided Krylov–Schur or
(3.18) for two-sided Krylov–Schur. The first two subplots in Figure 3.3 show
that one-sided Krylov–Schur is capable of capturing the qualitative behavior
of the pseudospectrum reasonably well, although the level curves appear to be
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“shifted”. For instance, the outermost level curve in the rdb800l approximation
corresponds to ε = 10−0.5, while the true pseudospectrum has the level curve
for ε = 10−0.8 at approximately the same position. The displacement of the level
curves is presumably caused by the high relative errors in the approximate singular
values. Indeed, for the same two examples, two-sided Krylov–Schur achieves
lower relative errors and has better contour approximations. The approximation
quality in the last example is comparable for both methods, with the two-sided
Krylov–Schur approximation being more accurate near the eigenvalues, and the
one-sided Krylov–Schur approximation being better further away. This contrast
might be explained by the two-sided Rayleigh quotient having faster asymptotic
convergence than the one-sided Rayleigh quotient. Finally, we remark that only
the one-sided approximation of the singular value is monotonic in the sense that

σmin(A − zI) ≤ σmin(V
∗
m+1(A − zI)Vm),

and as a result, there are areas where

σmin(A−zI) ≤ σmin(W
∗
m(A−zI)Vm) or σmin(A−zI) ≥ σmin(W

∗
m(A−zI)Vm),

separated by curves where

σmin(A − zI) = σmin(W
∗
m(A − zI)Vm).

These “zero-error” curves tend to connect accurate Ritz values and show up as
dark(er) lines in the heat maps in Figure 3.4.

3.9 Conclusion

We have presented a two-sided Krylov–Schur method for nonnormal matrices
as a natural generalization of the one-sided Krylov–Schur approach by Stewart.
An advantage of two-sided Krylov–Schur over two-sided Lanczos is the use of
orthonormal bases, and an advantage over one-sided Krylov–Schur is the simul-
taneous approximation of left and right eigenvectors or eigenspaces. The two-
sided approximations may already give useful information concerning eigenvalue
conditioning during the iterations. Furthermore, for some applications, the two-
sided method may converge with fewer matrix-vector products than the standard
Krylov–Schur method.

Primary disadvantages of the new method are the computational cost per
iteration, which is roughly twice that of the one-sided Krylov–Schur method, and
potential numerical stability and accuracy issues in the computation of the Ritz
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Figure 3.2: Pseudospectra of randn (left), rdb800l (middle), and pipe (right). The
level curves range from 10−1.7 to 10−0.5, 10−1.4 to 10−0.5, and 10−5 to 10−3.5,
respectively.
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Figure 3.3: Level curves for the pseudospectra approximations obtained with one-
sided Krylov–Schur, with randn (left), rdb800l (middle), and pipe (right). The heat
maps show the value of the error measure defined in (3.19) and have the average
values +0.249, +0.366, and −1.372, respectively.
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Figure 3.4: Level curves for the pseudospectra approximations obtained with one-
sided Krylov–Schur, with randn (left), rdb800l (middle), and pipe (right). The heat
maps show the value of the error measure defined in (3.19) and have the average
values −1.464, −0.920, and −1.597, respectively.
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values. The numerical issues caused by oblique projections can mainly be avoided
with a proper implementation, as discussed in Section 3.5.

The two-sided Krylov–Schur method may be combined with either the stan-
dard two-sided Rayleigh–Ritz extraction or the harmonic two-sided Rayleigh–Ritz
extraction. We have seen that the implementation of the standard two-sided
extraction is relatively straightforward, while the implementation of the harmonic
extraction is more complicated.

Theoretical convergence properties have been investigated and generalized
and show when and how well we can expect two-sided methods to converge.
Furthermore, numerical experiments demonstrate that two-sided Krylov–Schur
may excel in finding the best-conditioned eigenvalues of nonnormal matrices.
Additional numerical experiments show that the shift-invariant left and right
Krylov spaces computed with two-sided Krylov–Schur may be useful for the
approximation of pseudospectra.



Chapter 4

Multidirectional subspace expansion for one-
and multiparameter Tikhonov regularization

Abstract. Tikhonov regularization is a popular method to approximate solutions of linear discrete
ill-posed problems when the observed or measured data is contaminated by noise. Multiparameter
Tikhonov regularization may improve the quality of the computed approximate solutions. We
propose a new iterative method for large-scale multiparameter Tikhonov regularization with general
regularization operators based on a multidirectional subspace expansion. The multidirectional
subspace expansion may be combined with subspace truncation to avoid excessive growth of the
search space. Furthermore, we introduce a simple and effective parameter selection strategy based
on the discrepancy principle and related to perturbation results.

Key words. Tikhonov, multiparameter Tikhonov, generalized Krylov, multidirectional subspace
expansion, subspace truncation, subspace method, linear discrete ill-posed problem, regularization,
regularization parameter.

AMS subject classification. 15A29; 65F10; 65F22; 65F30; 65R30; 65R32

4.1 Introduction

We consider one-parameter and multiparameter Tikhonov regularization prob-
lems of the form

(4.1) argmin
x

∥Ax − b∥2 +
ℓ∑

i=1

µi∥Lix∥2 (ℓ ≥ 1),

where ∥ · ∥ denotes the 2-norm and the superscript i is used as an index. We focus
on large-scale discrete ill-posed problems such as the discretization of Fredholm
integral equations of the first kind. More precisely, assume A is an ill-conditioned
or even singular m × n matrix with m ≥ n, Li are pi × n matrices such that the
nullspaces of A and Li intersect trivially, and µi are nonnegative regularization
parameters. Furthermore, assume b is contaminated by an error e and satisfies

61
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b = Ax⋆ + e, where x⋆ is the exact solution. Finally, we assume that a bound
∥e∥ ≤ ϵ is available, so that the discrepancy principle can be used.

In one-parameter Tikhonov regularization (ℓ = 1), the choice of the regu-
larization operator is typically significant, since frequencies in the nullspace of
the operator remain unpenalized. Multiparameter Tikhonov can be used when
a satisfactory choice of the regularization operator is unknown in advance, or
can be seen as an attempt to combine the strengths of different regularization
operators. In some applications, using more than one regularization operator and
parameter allows for more accurate solutions [4, 13, 53, 57].

Solving (4.1) for large-scale problems may be challenging. In case the µi are
fixed a priori, methods such as LSQR [67] or LSMR [20] may be used. However,
the problem becomes more complicated when the regularization parameters are
not fixed in advance [34, 47, 53]. In this chapter, we present a new subspace
method consisting of three phases; a new expansion phase, a new extraction
phase, and a new truncation phase. To be more specific, letXk ⊂ Rn be a subspace
of dimension k ≪ n, and let the columns of Xk form an orthonormal basis for Xk.
Then we can compute matrix decompositions

(4.2)
AXk = Uk+1Hk,

LiXk = V i
kK

i
k (i = 1, 2, . . . , ℓ),

where Uk+1 and V i
k have orthonormal columns, βu1 = b, β = ∥b∥, Hk is a

(k+1)×kHessenberg matrix, and K i
k is upper triangular. Denote µ = (µ1, . . . , µℓ)

for convenience. Now restrict the solution space to Xk so that xk(µ) = Xkck(µ),
where

(4.3)

ck(µ) = argmin
c

∥AXkc − b∥2 +
ℓ∑

i=1

µi∥LiXkc∥
2

= argmin
c

∥Hkc − βe1∥
2 +

ℓ∑
i=1

µi∥K i
kc∥

2.

The vector e1 is the first standard basis vector of appropriate dimension. Our
chapter has three contributions. First, a new expansion phase where we add mul-
tiple search directions to Xk. Second, a new truncation phase which removes
unwanted new search directions. Third, a newmethod for selecting the regulariza-
tion parameters µik in the extraction phase. The three phases work alongside each
other: the intermediate solution obtained in the extraction phase is preserved in
the truncation phase, whereas the remaining perpendicular component(s) from
the expansion phase are removed.
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The chapter is organized as follows. In Section 4.2 an existing nonlinear
subspace method is discussed, whereafter we propose the new multidirectional
subspace expansion of the expansion phase. Discussion of the truncation phase
follows immediately. Section 4.3 is focused on discrepancy principle based para-
meter selection for one-parameter regularization. New lower and upper bounds
on the regularization parameter are provided. Sections 4.4 and 4.5 describe the
extraction phase. In the former, a straightforward parameter selection strategy
for multiparameter regularization is given, in the latter, a justification using
perturbation analysis. Numerical experiments are performed in Section 4.6 and
demonstrate the competitiveness of our new method. We end with concluding
remarks in Section 4.7.

4.2 Subspace expansion for multiparameter Tikhonov

Let us first consider one-parameter Tikhonov regularization with a general regu-
larization operator. Then ℓ = 1 and we write µ = µ1, L = L1, and Kk = K1

k , such
that (4.1) simplifies to

argmin
x

∥Ax − b∥2 + µ∥Lx∥2.

When L = I we use the Golub–Kahan–Lanczos bidiagonalization procedure to
generate the Krylov subspace

Xk = Kk(A
∗A, A∗b) = span{A∗b, (A∗A)A∗b, . . . , (A∗A)k−1A∗b}.

In this case Hk is lower bidiagonal and Kk is the identity and

xk+1 =
(I − XkX∗

k )A
∗uk+1

∥(I − XkX∗
k )A

∗uk+1∥
.

If L , I one can still try to use the above Krylov subspace [34], however, it may
be more natural to consider a shift-independent generalized Krylov subspace of
the form

Xk = Kk(A
∗A, L∗L, A∗b),

spanned by the first k vectors in

Group 0 A∗b

Group 1 (A∗A)A∗b, (L∗L)A∗b

Group 2 (A∗A)2A∗b, (A∗A)(L∗L)A∗b, (L∗L)(A∗A)A∗b, (L∗L)2A∗b

. . .
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This generalized Krylov subspace was first studied by Li and Ye [55] and later
by Reichel, Sgallari, and Ye [71]. An orthonormal basis can be created with a
generalization of Golub–Kahan–Lanczos bidiagonalization [35]. However, while
the search space grows linearly as a function of the number of matrix-vector
products, the dimension of the generalized Krylov subspace grows exponentially
as a function of the total degree of a bivariate matrix polynomial. As a result, if
we take any vector x ∈ Kk(A∗A, L∗L, A∗b) and write it as p(A∗A, L∗L)A∗b, where
p is a bivariate polynomial, then p has at most degree ⌊log2 k⌋. This low degree
may be undesirable especially for small regularization parameters µ. Reichel and
Yu [72, 73] solve this in part with algorithms that can prioritize one operator
over the other. For instance, if w is a vector in a group j and B has priority
over A, then group j + 1 contains (A∗A)w , (B∗B)w , (B∗B)2w , . . . , (B∗B)ρw . The
downside is that ρ is a user defined constant, and that the expansion vectors are
not necessarily optimal.

An alternative approach is a greedy nonlinear method described by Lampe,
Reichel, and Voss [53]. We briefly review their method and state a straightforward
extension to multiparameter Tikhonov regularization. First note that the low-
dimensional minimization in (4.3) simplifies to

ck(µ) = argmin
c

∥AXkc − b∥2 + µ∥LXkc∥
2

= argmin
c

∥Hkc − βe1∥
2 + µ∥Kkc∥

2

in the one-parameter case. Next, compute a value µ = µk using, e.g., the discrep-
ancy principle. It is easy to verify that

A∗b−(A∗A + µkL
∗L)xk(µk)

= A∗Uk+1(βe1 − Hkck(µk)) + µkL
∗VkKkck(µk)

is perpendicular to Xk, and is also the gradient of the cost function

x ↦→
1
2
(∥Ax − b∥2 + µ∥Lx∥2)

in the point xk(µk). Therefore, this vector is used to expand the search space. As
usual, expansion and extraction are repeated until suitable stopping criteria are
met.

As indicated previously, Lampe, Reichel, and Voss [53] consider only one-
parameter Tikhonov regularization, however, their method readily extends to
multiparameter Tikhonov regularization. Again, the first step is to decide on
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regularization parameters µk. Next, use the residual of the normal equations

A∗b−
(
A∗A +

ℓ∑
i=1

µikL
i∗Li

)
xk(µk)

= A∗Uk+1(βe1 − Hkck(µk)) −
ℓ∑

i=1

µikL
i∗V i

kK
i
kck(µk)

to expand the search space. Note that the residual is again orthogonal to Xk and
also the gradient of the cost function

x ↦→
1
2
(∥Ax − b∥2 +

ℓ∑
i=1

µi∥Lix∥2).

We summarize this multiparameter method in Algorithm 4.1, but remark that in
practice we initially use Golub–Kahan–Lanczos bidiagonalization until a µk can
be found that satisfies the discrepancy principle.

Algorithm 4.1 (Generalized Krylov subspace Tikhonov regularization; extension
of [53]).
Input: Measurement matrix A, regularization operators L1, . . . , Lℓ , and data b.
Output: Approximate solution xk ≈ x⋆.
1. Initialize β = ∥b∥, U1 = b/β, X0 = [], x0 = 0, and µ0 = 0.

for k = 1, 2, . . . do
2. Expand Xk−1 with A∗b − (A∗A +

∑ℓ
i=1 µ

i
k−1L

i∗Li)xk−1.
3. Update AXk = Uk+1Hk and LiXk = V i

kK
i
k.

4. Select µk; see Section 4.4 and Algorithm 4.3.
5. ck = argminc



[Hk;
√
µ1kK

1
k ; . . . ;

√
µℓkK

ℓ
k

]
c − βe1



.
6. xk = Xkck.
7. if ∥xk − xk−1∥/∥xk∥ is sufficiently small then break

Suitable regularization operators often depend on the problem and its solu-
tion. Multiparameter regularization may be used when a priori information is
lacking. In this case, it is not obvious that the residual vector above is a “good”
expansion vector, in particular if the intermediate regularization parameters µk
are not necessarily accurate. Hence, we propose to remove the dependence on
the parameters to some extent by expanding the search space with the vectors

(4.4) A∗Axk(µk), L1
∗
L1xk(µk), . . . , Lℓ

∗
Lℓxk(µk)
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separately. Here, we omit A∗b as it is already contained in Xk. Since we expand
the search space in multiple directions, we refer to this expansion as a “multi-
directional” subspace expansion. Observe that the previous residual expansion
vector is in the span of the multidirectional expansion vectors.

It is unappealing for the search space to grow with ℓ + 1 basis vectors per iter-
ation, because the cost of orthogonalization and the cost of solving the projected
problems depend on the dimension of the search space. Therefore, we wish to
condense the best portions of the multiple directions in a single vector, and use
the following approach. First we expand Xk with the vectors in (4.4) and obtain
X̃k+ℓ+1. Then we compute the decompositions

AX̃k+ℓ+1 = Ũk+ℓ+2H̃k+ℓ+1,

Li X̃k+ℓ+1 = Ṽ i
k+ℓ+1 K̃

i
k+ℓ+1 (i = 1, 2, . . . , ℓ),

analogously to (4.2), and determine parameters µk+1 and the approximate solu-
tion˜ck+ℓ+1. Next, we compute

(4.5)
A(X̃k+ℓ+1Z

∗) = (Ũk+ℓ+2P
∗)(PH̃k+ℓ+1Z

∗),

Li(X̃k+ℓ+1Z
∗) = (Ṽ i

k+ℓ+1Q
i∗)(Qi K̃ i

k+ℓ+1Z
∗) (i = 1, 2, . . . , ℓ),

where Z, P, and Qi are orthonormal matrices of the form

(4.6) Z =

[
Ik

Zℓ+1

]
, P =

[
Ik+1

Pℓ+1

]
, Qi =

[
Ik

Qi
ℓ+1

]
.

Here Ik is the k × k identity matrix and Zℓ+1 is an orthonormal matrix so that
Zℓ+1˜ck+1:k+ℓ+1 = γe1 for some scalar γ. The matrices Pℓ+1 and Qi

ℓ+1 are com-
puted to make H̃k+ℓ+1Z

∗ and K̃ i
k+ℓ+1Z

∗ respectively upper-Hessenberg and upper-
triangular again. At this point we can truncate (4.5) to obtain

AXk+1 = Uk+2Hk+1,

LiXk+1 = V i
k+1K

i
k+1 (i = 1, 2, . . . , ℓ),

and truncate Z˜ck+ℓ+1 to obtain ck+1 so that X̃k+ℓ+1˜ck+ℓ+1 = Xk+1ck+1. The trun-
cation is expected to keep important components, since the directions removed
from Xk+ℓ+1 are perpendicular to the current best approximation xk+1, and also
to the previous best approximations xk, xk−1, . . . , x1. If the rotation and trun-
cation are combined in one step, then the computational cost of the method is
O((ℓ + 1)(n+m+ p1 + · · ·+ pℓ)), which quickly becomes smaller than the (re)or-
thogonalization cost as k grows.
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To illustrate our approach, let us consider a one-parameter Tikhonov example
where ℓ = 1. First we expand X1 = x1 with vectors A∗Ax1 and L∗Lx1. Let AX̃1+2 =
Ũ2+2H̃1+2 and LX̃1+2 = Ṽ1+2 K̃1+2, and use H̃1+2 and K̃1+2 to compute˜c1+2. We
then compute a rotation matrix Z2 so that Z2˜c2:3 = ±∥˜c2:3∥e1, and let Z be
defined as in (4.6). The matrices H̃1+2Z

∗ and K̃1+2Z∗ no longer have their original
structure, hence, we need to compute orthonormal P and Q such that PH̃1+2Z

∗

is again upper-Hessenberg and QK̃1+2Z∗ is upper-triangular. Schematically we
have

˜c∗1+2
−−−→

[
× × ×

]
(Z˜c1+2)∗
−−−−−−→

[
× × 0

]
,

H̃1+2
−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
× × ×

× × ×

0 × ×

0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
H̃1+2Z

∗

−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
× × ×

× × ×

0 × ×

0 × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
PH̃1+2Z

∗

−−−−−−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
× × ×

× × ×

0 × ×

0 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K̃1+2
−−−→

⎡⎢⎢⎢⎢⎢⎣
× × ×

0 × ×

0 0 ×

⎤⎥⎥⎥⎥⎥⎦
K̃1+2Z∗
−−−−−→

⎡⎢⎢⎢⎢⎢⎣
× × ×

0 × ×

0 × ×

⎤⎥⎥⎥⎥⎥⎦
QK̃1+2Z∗
−−−−−−→

⎡⎢⎢⎢⎢⎢⎣
× × ×

0 × ×

0 0 ×

⎤⎥⎥⎥⎥⎥⎦ ,
accompanied by the decompositions

A(X̃1+2Z
∗) = (Ũ2+2P

∗)(PH̃1+2Z
∗),

L(X̃1+2Z
∗) = (Ṽ1+2Q

∗)(QK̃1+2Z
∗).

At this point we truncate the subspaces by removing the last columns from X̃1+2Z∗,
Ũ2+2P∗, PH̃1+2Z

∗, Ṽ1+2Q∗, and QK̃1+2Z∗, and the bottom rows of PH̃1+2Z
∗ and

QK̃1+2Z∗, to obtain

AX2 = U3H2,

LX2 = V2K2.

Below we summarize the steps of the new algorithm for solving problem (4.1).
In our implementation we take care to use full reorthogonalization and avoid
extending Xk, Uk+1, and V i

k with numerically linearly dependent vectors. We omit
these steps from the pseudocode for brevity. In addition, we initially expand the
search space solely with A∗uk+1 until the discrepancy principle can be satisfied
conform Proposition 4.1 in Section 4.3.
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Algorithm 4.2 (Multidirectional Tikhonov regularization).
Input: Measurement matrix A, regularization operators. L1, . . . , Lℓ , and data b.
Output: Approximate solution xk ≈ x⋆.
1. Initialize β = ∥b∥, U1 = b/β, X0 = [], x0 = 0, and µ0 = 0.

for k = 0, 1, . . . , do
2. Expand Xk with A∗Axk, L1

∗L1xk, . . . , Lℓ
∗
Lℓxk.

3. Update AX̃k+ℓ+1 = Ũk+ℓ+2H̃k+ℓ+1 and Li X̃k+ℓ+1 = Ṽ i
k+ℓ+1 K̃

i
k+ℓ+1.

4. Select µk; see Section 4.4 and Algorithm 4.3.
5. ˜ck+ℓ+1 = argminc



[H̃k+ℓ+1;
√
µ1k K̃

1
k+ℓ+1; . . . ;

√
µℓk K̃

ℓ
k+ℓ+1

]
c − βe1



.
6. Compute P, Q, and Z (see text).
7. Truncate A(X̃k+ℓ+1Z∗) = (Ũk+ℓ+2P∗)(PH̃k+ℓ+1Z

∗)

and Li(X̃k+ℓ+1Z∗) = (Ṽ i
k+ℓ+1Q

i∗)(Qi K̃ i
k+ℓ+1Z

∗)

to AXk+1 = Uk+2Hk+1 and LiXk+1 = V i
k+1K

i
k+1.

8. Truncate Z˜ck+ℓ+1 to obtain ck+1 and set xk+1 = Xk+1ck+1.
9. if ∥xk+1 − xk∥/∥xk∥ is sufficiently small then break

We have completed our discussion of the expansion and truncation phase
of our algorithm. In the following section we discuss the extraction phase for
one-parameter Tikhonov regularization and discuss the multiparameter case in
later sections.

4.3 Parameter selection in standard Tikhonov

In this section we investigate parameter selection for general form one-parameter
Tikhonov, where ℓ = 1, µ = µ1, and L = L1. Multiple methods exist in the one-
parameter case to determine particular µk, including the discrepancy principle,
the L-curve criterion and generalized cross validation; see, for example, Hansen
[28, Ch. 7]. We focus on the discrepancy principle which states that µk must
satisfy

(4.7) ∥Axk(µk) − b∥ = ηϵ,

where ∥e∥ ≤ ϵ and η > 1 is a user supplied constant independent of ϵ.
Define the residual vector rk(µ) = Axk(µ) − b and the function ϕ(µ) =

∥rk(µ)∥2. A nonnegative µk satisfies the discrepancy principle if ϕ(µk) = η2ϵ2.
It is known that root finding methods can find solutions, for example, Lampe,
Reichel, and Voss [53] compare four of them. We prefer bisection for its reliability
and straightforward analysis and implementation. The performance difference
is not an issue because root finding requires a fraction of the total computation
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time and is no bottleneck. A unique solution µk exists under mild conditions, see
for instance [14]. Below we give a proof using our own notation.

Assume Hk and Kk are full rank and let PkΣkQ∗
k be the singular value decom-

position of HkK
−1
k . Let the singular values be denoted by

(4.8) σmax = σ1 ≥ σ2 ≥ · · · ≥ σk = σmin > 0.

Now we can express ck(µ) and ϕ as

ck(µ) = (H∗
kHk + µK

∗
kKk)

−1H∗
k βe1

= K−1
k (K−∗

k H∗
kHkK

−1
k + µI)

−1K−∗
k H∗

k βe1

= K−1
k Qk(Σ

2
k + µI)

−1
ΣkP

∗
k βe1

and

ϕ(µ) = ∥ βe1 − Hkck(µ)∥
2

= β2∥e1 − HkK
−1
k Qk(Σ

2
k + µI)

−1
ΣkP

∗
ke1∥

2

= β2∥(I − PkP
∗
k)e1 + PkP

∗
ke1 − PkΣk(Σ

2
k + µI)

−1
ΣkP

∗
ke1∥

2

= β2∥(I − PkP
∗
k)e1∥

2 + β2∥µ(Σ2k + µI)
−1P∗ke1∥

2.

Or alternatively,

(4.9) ϕ(µ) = β2∥(I − PkP
∗
k)e1∥

2 + β2
k∑
j=1

(
µ

σ2
j + µ

) 2

|Pk |
2
1j.

Observe that Pk is a basis for the range of Hk and I − PkP∗k is the orthogonal
projection onto the nullspace N (H∗

k) and is sometimes denoted by PN (H∗
k)
. Fur-

thermore, it can be verified that Hk βe1 , 0 if A∗b , 0, that is, b < N (A∗).

Proposition 4.1. If β2∥(I − PkP∗k)e1∥
2 ≤ η2ϵ2 < ∥b∥2, then there exists a unique

µk ≥ 0 such that ϕ(µk) = η2ϵ2.

Proof. (See also [14] and references therein). From (4.9) it follows that ϕ is a
rational function with poles µ = −σ2

j for all σ j > 0, therefore, ϕ is C∞ on the
interval [0, ∞). Additionally, ϕ is a strictly increasing and bounded function on
the same interval, since

d
dµ

(
µ

σ2
j + µ

) 2

= 2
µσ2

j

(σ2
j + µ)

3
> 0 for all µ > 0
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implies ϕ′(µ) > 0 and

ϕ(0) = β2∥(I − PkP
∗
k)e1∥

2 and lim
µ→∞
ϕ(µ) = β2 = ∥b∥2.

Consequently, there exists a unique µk ∈ [0, ∞) such that ϕ(µk) = η2ϵ2. □

Beyond nonnegativity, the proposition above provides little insight on the location
of µk on the real axis, and we would like to have lower and upper bounds. We
determine bounds in Proposition 4.2 and believe the results to be new. Both in
practice and for the proof of the subsequent proposition, it is useful to remove
nonessential parts of ϕ(µ) and instead work with the function

ϕ̃(µ) =
ϕ(µ) − ϕ(0)
β2

=

k∑
j=1

(
µ

σ2
j + µ

) 2

|Pk |
2
1j

and the quantity

(4.10) ϵ̃2 =
η2ϵ2 − ϕ(0)
β2

.

Then 0 ≤ ϕ̃(µ) ≤ ρ, where ρ = ∥P∗ke1∥ ≤ 1, and η2ϵ2 satisfies the bounds
in Proposition 4.1 if and only if 0 ≤ ϵ̃ < ρ, and ϕ(µk) = η2ϵ2 if and only if
ϕ̃(µk) = ϵ̃

2.

Proposition 4.2. If 0 ≤ ϵ̃ < ρ, and µk is such that ϕ̃(µk) = ϵ̃2, then

(4.11)
ϵ̃

ρ − ϵ̃
σ2

min ≤ µk ≤
ϵ̃

ρ − ϵ̃
σ2

max,

where σmin and σmax are as in (4.8).

Proof. Observe that

µ

σ2
max + µ

≤
µ

σ2
j + µ

≤
µ

σ2
min + µ

for all j = 1, . . . , k. Combining this observation with the definition of ϕ̃ yields(
µk

σ2
max + µk

) 2 k∑
j=1

|Pk |
2
1j ≤

k∑
j=1

(
µk

σ2
j + µk

) 2

|Pk |
2
1j ≤

(
µk

σ2
min + µk

) 2 k∑
j=1

|Pk |
2
1j.

Since
∑k

j=1 |Pk |
2
1j = ∥P∗ke1∥

2 = ρ2 and ϕ̃(µk) = ϵ̃2, it follows that

µk

σ2
max + µk

ρ ≤ ϵ̃ ≤
µk

σ2
min + µk

ρ.
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Hence, if ϵ̃ = 0, then µk = 0 and we are done. Otherwise µk , 0 and we can
divide by ρ, take the reciprocals, and subtract 1 to arrive at

σ2
max

µk
≥
ρ

ϵ̃
− 1 ≥

σ2
min

µk
,

so that

µk

σ2
max

≤
ϵ̃

ρ − ϵ̃
≤
µk

σ2
min

,

and the proposition follows. □

It is undesirable to work with the inverse of Kk when it becomes ill-conditioned.
Instead it may be preferred to use the generalized singular value decomposition
(GSVD)

Hk = PkCkZ
−1
k ,

Kk = QkSkZ
−1
k ,

where Pk and Qk have orthogonal columns and Zk is nonsingular. The matrices
Ck and Sk are diagonal with entries 0 ≤ c1 ≤ c2 ≤ · · · ≤ ck and respectively
s1 ≥ · · · ≥ sk ≥ 0, such that c2i + s2i = 1. The generalized singular values are
given by ci/si and are understood to be infinite when si = 0. If Kk is nonsingular,
then the generalized singular values coincide with the singular values of HkK

−1
k .

See Golub and Van Loan [24, Section 8.7.4] for more information.
Using a similar derivation as before, we can show that

ϕ(µ) = β2∥(I − PkP
∗
k)e1∥

2 + β2
k∑
j=1

( µs2j
c2j + µs

2
j

) 2

|Pk |
2
1j

and that the new bounds are given by

ϵ̃

ρ − ϵ̃

(
c1
s1

) 2

≤ µk ≤
ϵ̃

ρ − ϵ̃

(
ck
sk

) 2

.

Here µk is unbounded from above if sk = 0, that is, if Kk becomes singular.
The bounds in this section can be readily computed and used to implement

bisection and the secant method. We consider parameter selection for multipara-
meter regularization in the following section.
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4.4 A multiparameter selection strategy

Choosing satisfactory µik in multiparameter regularization is more difficult than
the corresponding one-parameter problem. See for example [4, 13, 22, 41, 52,
57]. In particular, there is no obvious multiparameter extension of the discrepancy
principle. Nevertheless, methods based on the discrepancy principle exist and we
will discuss three of them.

Brezinski et al. [13] have had some success with operator splitting. Substi-
tuting µik = ν

i
kω

i
k in (4.3) with nonnegative weights ωi

k and
∑ℓ

i=1 ω
i
k = 1 leads

to

argmin
c

ℓ∑
i=1

ωi
k(∥Hkc − βe1∥

2 + νik∥K
i
kc∥

2).

This form of the minimization problem suggests the approximation of X∗
kx⋆ by a

linear combination [13, Sec. 3] of cik(ν
i
k), where

(4.12) cik(ν) = argmin
c

∥Hkc − βe1∥
2 + ν∥K i

kc∥
2 (i = 1, 2, . . . , ℓ)

and where νik is such that ∥Hkc
i
k(ν

i
k) − βe1∥ = ηϵ. Alternatively, Brezinski et al.

consider solving

ck = argmin
c



[Hk;
√
ν1kK

1
k ; . . . ;

√
νℓkK

ℓ
k

]
c − βe1



,
where νi are fixed and obtained from (4.12). The latter approach provides better
results in exchange for an additional QR decomposition. In either case, opera-
tor splitting is a straightforward approach, but does not necessarily satisfy the
discrepancy principle exactly.

Lu and Pereverzyev [56] and later Fornasier, Naumova, and Pereverzyev [21]
rewrite the constrained minimization problem as a differential equation and
approximate

F(µ) = ∥Hkck(µ) − βe1∥
2 +

ℓ∑
i=1

µi∥K i
kck(µ)∥

2

by a model function m(µ) which admits a straightforward solution to the con-
structed differential equation. However, it is unclear which µ the method finds
and its solution may depend on the initial guess. On the other hand, it is possible
to keep all but one parameter fixed and compute a value for the free parameter
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such that the discrepancy principle is satisfied. This allows one to trace discrep-
ancy hypersurfaces to some extent.

Gazzola and Novati [22] describe another interesting method. They start with
a one-parameter problem and successively add parameters in a novel way, until
each parameter of the full multiparameter problem has a value assigned. Especially
in early iterations the discrepancy principle is not satisfied, but the parameters are
updated in each iteration so that the norm of the residual is expected to approach
ηϵ. Unfortunately, we observed some issues in our implementation. For example,
the quality of the result depends on initial values, as well as on the order in which
the operators are added (that is, the indexing of the operators). The latter problem
has been solved by a recently published and improved version of the method [23].

We propose a new method that satisfies the discrepancy principle exactly,
does not depend on an initial guess, and is independent of the scaling or indexing
of the operators. The method uses the operator splitting approach in combination
with new weights. Let us omit all k subscripts for the remainder of this section,
and suppose µi = µωi, where ωi are nonnegative, but do not necessarily sum to
one, and µ is such that the discrepancy principle is satisfied. Then (4.3) can be
written as

(4.13) argmin
c

∥Hc − βe1∥
2 + µ

ℓ∑
i=1

ωi∥K ic∥2.

Since the goal of regularization is to reduce sensitivity of the solution to noise,
we use the weights

(4.14) ωi =
∥ci(νi)∥
∥Dci(νi)∥

,

which bias the regularization parameters in the direction of lower sensitivity with
respect to changes in νi. Here D denotes the (total) derivative with respect to
regularization parameter(s), and ci and νi are defined as before, consequently

Dci(νi) = −(H∗H + νiK i∗K i)−1K i∗K ici(νi).

If for some indices Dci(νi) = 0, then we take a ci(νi) as the solution, or replace
∥Dci(νi)∥ by a small positive constant. With this parameter choice, the solution
does not depend on the indexing of the operators, nor, up to a constant, on the
scaling of A, b, or any of the Li. The former is easy to see; for the latter, let α, γ,
and λ i be positive constants, and consider the scaled problem

argmin
ˆx

∥γb − αAˆx∥2 + µ
ℓ∑

i=1

ω̂i∥λ iLiˆx∥2.
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The noisy component of γb is γe and ∥γe∥ ≤ γϵ, hence the new discrepancy
bound becomes

∥αAˆx − γb∥ = γηϵ.

The bound is satisfied when ω̂i = α2/(λ i)2 ωi, since in this case

ˆx =
(
α2A∗A + µ

ℓ∑
i=1

ωi α
2

(λ i)2
(λ i)2Li

∗
Li
) −1
αA∗γb =

γ

α
x

and

min
ˆx

∥γb−αAˆx∥2+µ
ℓ∑

i=1

ω̂i∥λ iLiˆx∥2 = γ2
(
min
x

∥Ax−b∥2+µ
ℓ∑

i=1

ωi∥Lix∥2
)
.

It may be checked that the weights in (4.14) are indeed proportional to α2/(λ i)2,
that is

ωi =
∥ci(νi)∥
∥Dci(νi)∥

∼
α2

(λ i)2
.

There are additional viable choices for ωi, including two smoothed versions of
the above:

ωi =
∥Hci(νi)∥

∥HDci(νi)∥
and ωi =

∥K ici(νi)∥
∥K iDci(νi)∥

,

which consider the sensitivity of ci(νi) in the range of H and K i respectively. We
summarize the new parameter selection in Algorithm 4.3 below.

Algorithm 4.3 (Multiparameter selection).
Input: Projected matrices H, K1, . . . , Kℓ , β = ∥b∥, noise estimate ϵ, uncertainty
parameter η, and threshold τ.
Output: Regularization parameters µ1, . . . , µℓ .
1. Use (4.12) to compute ci and νi.

if ∥Dci(νi)∥ ≤ τ∥ci(νi)∥ for some i then
2. Set ωi = τ−1; or set µi = νi and µ j = 0 for j , i.

else
3. Let ωi = ∥ci(νi)∥/∥Dci(νi)∥.
4. Compute µ in (4.13) such that the discrepancy principle is satisfied.
5. Set µi = µωi.
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An interesting property of Algorithm 4.3 is that, under certain conditions, c(µ(ϵ̃))
converges to the unregularized least squares solution

c(0) = (H∗H)−1H∗ βe1 = H+ βe1

as ϵ̃ goes to zero. Here H+ denotes the Moore–Penrose pseudoinverse and c(0)
is the minimum norm solution of the unregularized problem. The following
proposition formalizes this observation.

Proposition 4.3. Assume that H is full rank, H∗ βe1 , 0, and that K i is nonsin-
gular for i = 1, . . . ℓ. Let ϵ̃ and ρ be defined as in Section 4.3, let η > 1 be fixed,
and suppose that νi(ϵ̃) and

µ(ϵ̃) = (µ1(ϵ̃), . . . , µℓ(ϵ̃)) = µ(ϵ̃)(ω1(ν1(ϵ̃)), . . . , ωℓ(νℓ(ϵ̃)))

are computed according to Algorithm 4.3 for all 0 ≤ ϵ̃ < ρ. Then

lim
ϵ̃↓0
ωi(νi(ϵ̃)) = ωi(0) and lim

ϵ̃↓0
c(µ(ϵ̃)) = c(0).

Proof. First note that H∗ βe1 , 0 implies that β > 0 and ρ > 0. Since H is full
rank, the maps

ν ↦→ ci(ν), ν ↦→ Dci(ν), and µ ↦→ c(µ)

are continuous for all ν ≥ 0 and µ ≥ 0, where the latter bound should be
interpreted element-wise. Hence

lim
ν↓0

ci(ν) = ci(0), lim
ν↓0

Dci(ν) = Dci(0), and lim
µ↓0

c(µ) = c(0).

It remains to be shown that

(4.15) lim
ϵ̃↓0
νi(ϵ̃) = 0, ∥Dci(0)∥ , 0, and lim

ϵ̃↓0
µ(ϵ̃) = 0.

Let ϵ̃ be restricted to the interval [0, ρ/2] and define νimax = σ
2
max(H(K

i)−1). By
Proposition 4.2,

0 ≤ νi(ϵ̃) ≤
ϵ̃

ρ − ϵ̃
νimax ≤ ν

i
max,

which proves the first limit in (4.15). Furthermore, using the definitions of
ci(νi(ϵ̃)) and Dci(νi(ϵ̃)) we find the bounds

0 < ρβ
σmin(H)

∥H∥2 + νimax∥K i∥2
≤ ∥ci(νi(ϵ̃))∥ ≤ ρβ∥H+e1∥,

0 < ρβ
σmin(H)σ2

min(K
i)

(∥H∥2 + νimax∥K i∥2)2
≤ ∥Dci(νi(ϵ̃))∥ ≤ ρβ

∥K i∥2 ∥H+e1∥

σ2
min(H)

,
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which show that the inequality in (4.15) is satisfied. Moreover, the bounds show
there exist ωmin and ωmax such that

0 < ωmin ≤ ωi(ϵ̃) ≤ ωmax < ∞.

Now, let K(ϵ̃) be the nonsingular matrix satisfying

K(ϵ̃)∗K(ϵ̃) =
ℓ∑

i=1

ωi(ϵ̃)K i∗K i;

then it can be checked that

∥HK(ϵ̃)−1∥2 ≤
∥H∥2

mini ωminσ
2
min(K

i)
< ∞.

Define the right-hand side of the equation above as M, then by Proposition 4.2,
each entry of µ(ϵ̃) is bounded from below by 0 and from above by

ϵ̃

ρ − ϵ̃
Mωmax,

which goes to 0 as ϵ̃ ↓ 0. This proves the second limit in (4.15). □

Proposition 4.3 is related to [25, Thm 3.3.3], where it is shown that the solution
of a standard form Tikhonov regularization problem converges to a minimum
norm least squares solution when the discrepancy principle is used and the noise
converges to zero.

In this section we have discussed a new parameter selection method. In the
next section we will look at the effect of perturbations in the parameters on the
obtained solutions.

4.5 Perturbation analysis

The goal of regularization is to make reconstruction robust with respect to noise.
By extension, a high sensitivity to the regularization parameters is undesirable.
Consider a set of perturbed parameters µk + ∆µ; if ∥∆µ∥ is sufficiently small

ck(µk + ∆µ) = ck(µk) + Dck(µk)∆µ +O(∥∆µ∥2)

= ck(µk) − M−1
∆Mck(µk) +O(∥∆µ∥2),

where M and ∆M are defined as

(4.16) M = H∗
kHk +

ℓ∑
i=1

µikK
i
k
∗
K i
k and ∆M =

ℓ∑
i=1

∆µikK
i
k
∗
K i
k.
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Therefore, one might choose µk to minimize the sensitivity measure

∥Dc(µk)∆µ∥ = ∥M−1
∆Mc(µk)∥.

To see the connection with the previous section, suppose that µk = νikei and
∆µ = ±∥∆µ∥ei, then

∥M−1
∆M∥ ≥

∥M−1∆Mck(µk)∥
∥ck(µk)∥

=
∥Dck(µk)∆µ∥
∥ck(µk)∥

=
∥Dcik(ν

i
k)∥ ∥∆µ∥

∥cik(ν
i
k)∥

=
∥∆µ∥

ωi
k

.

Thus, larger weights ωi
k correspond to smaller lower bounds on ∥M−1∆M∥. Hav-

ing small lower bounds is desirable, since we show in Proposition 4.4 and 4.5 that
minimizing ∥M−1∆M∥ is equivalent to minimizing upper bounds on the forward
and backward errors respectively.

Proposition 4.4. Given regularization parameters µik and perturbations µi⋆ =
µik + ∆µ

i
k, let ck = ck(µk), c⋆ = ck(µ⋆), xk = Xkck, and x⋆ = Xkc⋆. Assume Hk

and all K i
k are of full rank and define matrices M and ∆M as in (4.16). If M and

M +∆M are nonsingular and the ∆µik are sufficiently small so that ∥M−1∆M∥ < 1,
then

∥xk − x⋆∥
∥xk∥

≤
∥M−1∆M∥

1 − ∥M−1∆M∥
.

Proof. Observe that ck = M−1H∗
k βe1 and c⋆ = (M + ∆M)−1H∗

k βe1. With a little
manipulation we obtain

c⋆ = (M + ∆M)−1Mck = (I + M−1
∆M)−1ck =

∞∑
j=0

(−M−1
∆M)jck.

It follows that

∥ck − c⋆∥
∥ck∥

=
1

∥ck∥





 ∞∑
j=1

(−M−1
∆M)jck





 ≤

∞∑
j=1

∥M−1
∆M∥ j ≤

∥M−1∆M∥

1 − ∥M−1∆M∥
.

Since Xk has orthonormal columns, the result of the proposition follows. □

One may wonder if it is possible to pick a vector f close to βe1 such that

ck = (M + ∆M)−1H∗
k f .

Or in other words, given perturbed regularization parameters, is there a perturba-
tion of βe1 such that the optimal approximation to the exact solution is obtained?
The following proposition provides a positive answer.
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Proposition 4.5. Under the assumptions of Proposition 4.4, there exist vectors f
and g such that ck = (M + ∆M)−1H∗

k f and c⋆ = M−1H∗
kg. Furthermore, f and g

satisfy

∥ βe1 − f ∥
∥ βe1∥

≤ κ(Hk)
∥M−1∆M∥

1 − ∥M−1∆M∥
,

∥ βe1 − g∥
∥ βe1∥

≤ κ(Hk)∥M
−1
∆M∥,

where κ(Hk) is the condition number of Hk.

Proof. The vector f is easy to derive using the Ansatz

(M + ∆M)−1H∗
k f = M−1H∗

k βe1.

Let Hk = QR denote the reduced QR-decomposition of Hk, then

R∗Q∗ f = (M + ∆M)M−1H∗
k βe1

and

f = QR−∗(M + ∆M)M−1H∗
k βe1 + (I − QQ∗)v

for arbitrary v . Indeed, it is easy to verify that the above vector satisfies

ck = (M + ∆M)−1H∗
k f .

If we choose v = βe1, then

f = QR−∗
∆MM−1R∗Q∗ βe1 + βe1,

so that

∥ βe1 − f ∥
∥ βe1∥

= ∥QR−∗
∆MM−1R∗Q∗e1∥ ≤ ∥R−∗∥ ∥R∗∥ ∥∆MM−1∥.

Here ∥R−∗∥ ∥R∗∥ is the condition number κ(Hk) and ∥∆MM−1∥ = ∥M−1∆M∥,
since both M and ∆M are symmetric. This proves the first part of the proposition.

The second part is analogous. In particular, we use the Ansatz

M−1H∗
kg = (M + ∆M)−1H∗

k βe1

and derive

g = R−∗QM(M + ∆M)−1H∗
k βe1 + (I − QQ∗)βe1.
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Again it is easy to verify that c⋆ = M−1H∗
kg. Observe that g can be rewritten as

g = R−∗Q((I + ∆MM−1)−1 − I)R∗Q∗ βe1 + βe1,

such that

∥ βe1 − f ∥
∥ βe1∥

= ∥R−∗((I + ∆MM−1)−1 − I)R∗Q∗e1∥

≤ ∥R−∗∥ ∥R∗∥ ∥(I + ∆MM−1)−1 − I∥.

Since ∥∆MM−1∥ = ∥M−1∆M∥ < 1, it follows that

∥(I + ∆MM−1)−1 − I∥ ≤

∞∑
j=1

∥ − ∆MM−1∥ j =
∥M−1∆M∥

1 − ∥M−1∆M∥
,

which concludes the proof. □

We have discussed forward and backward error bounds which help to choose
our parameters. Now that we have investigated each of the three phases of our
method, we are ready to show numerical results.

4.6 Numerical experiments

We benchmark our algorithm with problems from Regularization Tools by Hansen
[27]. Each problem provides an ill-conditioned n × n matrix A, a solution vector
x⋆ of length n and a corresponding measured vector b. We take n = 1024 and
add a noise vector e to b. The entries of e are drawn independently from the
standard normal distribution. The noise vector is then scaled such that ϵ = ∥e∥
equals 0.01∥b∥ or 0.05∥b∥ for 1% and 5% noise respectively. We use η = 1.01
for the discrepancy bound in (4.7). We test the algorithms with 1000 different
noise vectors for every triplet A, x⋆, and b and report the median results.

The algorithms terminate when the relative difference between two subse-
quent approximations is less than 0.01, when xk+1 is (numerically) linear de-
pendent in Xk, when both Uk+1 and none of the V i

k can be expanded, or when a
maximum number of iterations is reached. For Algorithm 4.2 we use a maximum
of 20 iterations and for Algorithm 4.1 a maximum of (ℓ + 1) × 20 iterations. For
the sake of a fair comparison, the algorithms return the best obtained approxi-
mations and their iteration numbers.

For each test problem, the tables below list the relative error obtained with
Algorithm 4.1, abbreviated by Eod, and Algorithm 4.2, abbreviated by Emd. OD
and MD stand for one direction and multidirectional respectively. Also listed
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are the ratio ρE of Emd to Eod and the ratio ρmv of the number of matrix-vector
products. That is,

ρE =
Emd

Eod
and ρmv =

# MVs Algorithm 4.2
# MVs Algorithm 4.1

.

Only matrix-vector multiplications with A, A∗, Li, and Li∗ count towards the total
number of MVs used by each algorithm. We note, however, that multiplications
with Li and Li∗ are often less costly than multiplications with A and A∗.

Table 4.1: One-parameter Tikhonov regularization results.

Noise 1% 5%

Problem Eod Emd ρE ρmv Eod Emd ρE ρmv

Baart 1.73 · 10−1 1.11 · 10−1 0.64 1.93 2.91 · 10−1 2.71 · 10−1 0.93 1.53

Deriv2-1 2.44 · 10−1 2.44 · 10−1 1.00 1.00 3.32 · 10−1 3.32 · 10−1 1.00 0.78

Deriv2-2 2.35 · 10−1 2.35 · 10−1 1.00 0.83 3.22 · 10−1 3.22 · 10−1 1.00 0.78

Deriv2-3 4.35 · 10−2 4.35 · 10−2 1.00 0.92 7.97 · 10−2 7.64 · 10−2 0.96 1.17

Foxgood 3.31 · 10−2 3.30 · 10−2 1.00 0.67 6.64 · 10−2 6.63 · 10−2 1.00 0.67

Gravity-1 3.85 · 10−2 3.41 · 10−2 0.88 1.08 7.39 · 10−2 6.86 · 10−2 0.93 1.11

Gravity-2 5.53 · 10−2 5.26 · 10−2 0.95 1.10 8.66 · 10−2 8.39 · 10−2 0.97 1.11

Gravity-3 1.03 · 10−1 9.21 · 10−2 0.90 1.08 1.14 · 10−1 1.10 · 10−1 0.97 1.11

Heat 9.26 · 10−2 9.12 · 10−2 0.99 1.05 2.02 · 10−1 1.91 · 10−1 0.95 1.37

Phillips 2.50 · 10−2 2.50 · 10−2 1.00 1.00 4.52 · 10−2 4.52 · 10−2 1.00 1.00

Table 4.1 lists the results for one-parameter Tikhonov regularization, where
we used the following regularization operators. The first derivative operator L1
with stencil [1, −1] for Gravity-3, Heat-5, Heat, and Phillips. The second derivative
operator L2 with stencil [1, −2, 1] for Deriv2-1, Deriv2-2, Foxgood, Gravity-1, and
Gravity-2. The third derivative operator L3 with stencil [−1, 3, −3, 1] for Baart.
The fifth derivative operator L5 with stencil [−1, 5, −10, 10, −5, 1] and Deriv2-3.
The derivative operators Ld are of size (n − d) × n.

The table shows that multidirectional subspace expansion can obtain small im-
provements in the relative error at the cost of a small number of extramatrix-vector
products, especially for 1% noise. We stress that in these cases, Algorithm 4.1 is
allowed to perform additional MVs, but converges with a higher relative error. If
there is no improvement in the relative error, we see that multidirectional sub-
space expansion can improve convergence, for example, for the Deriv2 problems
as well as Foxgood.
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Table 4.2: Multiparameter Tikhonov regularization results.

Noise 1% 5%

Problem Eod Emd ρE ρmv Eod Emd ρE ρmv

Baart 1.72 · 10−1 5.39 · 10−2 0.31 2.60 2.84 · 10−1 2.59 · 10−1 0.91 2.60

Deriv2-1 2.27 · 10−1 5.82 · 10−3 0.03 1.81 3.21 · 10−1 2.91 · 10−2 0.09 2.20

Deriv2-2 2.29 · 10−1 2.03 · 10−2 0.09 1.55 2.95 · 10−1 4.91 · 10−2 0.17 1.72

Deriv2-3 4.35 · 10−2 4.32 · 10−2 0.99 1.00 7.71 · 10−2 7.71 · 10−2 1.00 1.00

Foxgood 3.29 · 10−2 1.10 · 10−2 0.34 1.35 6.26 · 10−2 5.44 · 10−2 0.87 1.35

Gravity-1 3.69 · 10−2 1.83 · 10−2 0.50 1.18 7.24 · 10−2 4.52 · 10−2 0.63 1.63

Gravity-2 5.52 · 10−2 3.97 · 10−2 0.72 2.04 8.52 · 10−2 6.96 · 10−2 0.82 2.26

Gravity-3 1.02 · 10−1 9.24 · 10−2 0.91 1.89 1.14 · 10−1 1.08 · 10−1 0.95 1.72

Heat 8.79 · 10−2 8.77 · 10−2 1.00 1.19 1.97 · 10−1 1.83 · 10−1 0.93 1.40

Phillips 2.49 · 10−2 2.47 · 10−2 0.99 1.21 4.08 · 10−2 4.01 · 10−2 0.98 1.40

Table 4.2 lists the results for multiparameter Tikhonov regularization. We
have used the following regularization operators for each problem: the derivative
operator Ld as listed above, the identity operator I, and the orthogonal projection
I − NdN∗

d , where the columns of Nd are an orthonormal basis for the nullspace
N (Ld).

Overall, we observe larger improvements in the relative error for multidirec-
tional subspace expansion, but also a larger number of MVs. We no longer see
cases where multidirectional subspace expansion terminates with fewer MVs. In
fact, the relative error is the same for Heat, although more MVs are required.
Finally, Figure 4.1 illustrates an example of the improved results which can be
obtained by using multidirectional subspace expansion.

In the next tests we attempt to reconstruct the original image from a blurred
and noisy observation. Consider an n× n grayscale image with pixel values in the
interval [0, 1]. Then x is a vector of length n2 obtained by stacking the columns
of the image below each other. The matrix A represents a Gaussian blurring
operator, generated with blur from Regularization Tools. The matrix A is block-
Toeplitz with half-bandwidth band=11 and the amount of blurring is given by
the variance sigma=5. The entries of the noise vector e are independently drawn
from the standard normal distribution after which the vector is scaled such that
ϵ = E[∥e∥] = 0.05∥b∥. We take η such that ∥e∥ ≤ ηϵ in 99.9% of the cases, that
is,

(4.17) η = 1 +
3.090232
√
2n2

.
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Figure 4.1: baart test matrix with n = 1024 and 1% noise. The solid line is the exact
solution. The dashed line is the solution obtained with multiparameter regulariza-
tion and the residual subspace expansion (Algorithm 4.1). The dotted line is the
solution obtained with multiparameter regularization and multidirectional subspace
expansion (Algorithm 4.2).

For regularization we choose an approximation to the Perona–Malik [70] operator

L(x) = div(g(|∇x |2)∇x),

g(s) = e−s/ρ
2

(ρ > 0),

where ρ is a small positive constant. Because L is a nonlinear operator, we first
perform a small number of iterations with a finite difference approximation Lb of
L(b). The resulting intermediate solution˜x is used for a new approximation Lx̃ of
L(˜x). Finally, we run the algorithms a second time with L

˜x andmore iterations; see
Reichel, Sgallari, and Ye [71] for more information regarding the implementation
of the Perona–Malik operator. As a measure of the reconstruction quality we use
the peak signal-to-noise ratio (PSNR) given by

−20 log10

(
∥x⋆ − xk∥

n

)
,

where a higher value corresponds to a higher quality reconstruction.
We use the Chinese Lu symbol as a test image, see Figure 4.2; ρ = 0.1 and

ρ = 0.075 for the Perona–Malik operator, 25 iterations for the first run, and 500
iterations for the second run. The convergence history in Figure 4.3 shows that
ρ = 0.1 leads to faster convergence, while ρ = 0.075 leads to a higher PSNR.
We also observe that, depending on the regularization operator, multidirectional
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Figure 4.2: Deblurring results for lu. The original (left), observed (middle), and
reconstructed images (right).
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Figure 4.3: Convergence history for lu with ρ = 0.1 (left) and ρ = 0.075 (right).

Table 4.3: The number of iterations, matrix-vector products, and wall-clock time
required by Algorithms 4.1 and 4.2 for deblurring lu and reaching the highest PSNR
achieved by the less accurate algorithm. Results for ρ = 0.1 and the PSNR 20.90 in
the upper rows, and ρ = 0.075 and the PSNR 22.75 in the lower rows.

Method #Itn A A∗ L L∗ Total Time (s)

Alg 4.1 74 74 74 74 73 295 27

Alg 4.2 286 286 286 563 277 1689 312

Alg 4.1 500 500 500 500 499 1999 662

Alg 4.2 303 597 303 597 294 1791 360
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subspace expansion may allow the convergence to a more accurate solution. In
both cases, the algorithm with the most accurate solution obtains the best solution
of the other algorithm with fewer iterations. However, because multidirectional
subspace expansion requires extra matrix-vector products we need to be careful
when investigating the performance difference. A detailed breakdown of the
number of matrix-vector products used, as well as the wall-clock time, is shown
in Table 4.3. It can be seen that although there is only a small difference in
the number of total matrix-vector products used for ρ = 0.075, there is a large
improvement in wall-clock time. This improvement can be explained by the lower
orthogonalization cost for smaller subspaces, and the use of block operations
which can only be used in Algorithm 4.2. For reference, the runtimes were
obtained on an Intel Core i7-3770 and with MATLAB R2015b on 64-bit Linux
4.2.5.

4.7 Conclusion

We have presented a new method for large-scale Tikhonov regularization prob-
lems. In accordance with Algorithm 4.2, the method combines a new multidirec-
tional subspace expansion with optional truncation to produce a higher quality
search space. The multidirectional expansion generates a richer search space,
whereas the truncation ensures moderate growth. Numerical results illustrate
that our method can yield more accurate results or faster convergence. Further-
more, using block methods can partially offset the increased amount of work per
iteration of the multidirectional method. In addition, the total orthogonalization
cost may be lower when higher quality approximations are available in smaller
subspaces. We have also presented lower and upper bounds on the regularization
parameter when the discrepancy principle is applied to one-parameter regular-
ization. These lower and upper bounds can be used in particular to initiate the
bisection or the secant method. In addition, we have introduced a straightfor-
ward parameter choice for multiparameter regularization, as summarized by
Algorithm 4.3. The parameter selection satisfies the discrepancy principle, and is
based on easy to compute derivatives that are related to the perturbation results
of Section 4.5.



Chapter 5

Generalized Davidson and
multidirectional-type methods for the
generalized singular value decomposition

Abstract.We propose new iterative methods for computing nontrivial extremal generalized singular
values and vectors. The first method is a generalized Davidson-type algorithm and the second
method employs a multidirectional subspace expansion technique. Essential to the latter is a
fast truncation step designed to remove a low quality search direction and to ensure moderate
growth of the search space. Both methods rely on thick restarts and may be combined with two
different deflation approaches. We argue that the methods have monotonic and (asymptotic)
linear convergence, derive and discuss locally optimal expansion vectors, and explain why the fast
truncation step ideally removes search directions orthogonal to the desired generalized singular
vector. Furthermore, we identify the relation between our generalized Davidson-type algorithm
and the Jacobi–Davidson algorithm for the generalized singular value decomposition. Finally,
we generalize several known convergence results for the Hermitian eigenvalue problem to the
Hermitian positive definite generalized eigenvalue problem. Numerical experiments indicate that
both methods are competitive.

Key words. Generalized singular value decomposition, GSVD, generalized singular value, gen-
eralized singular vector, generalized Davidson, multidirectional subspace expansion, subspace
truncation, thick restart.

AMS subject classification. 15A18, 15A23, 15A29, 65F15, 65F22, 65F30, 65F50.

5.1 Introduction

The generalized singular value decomposition (GSVD) [66] is a generalization of
the standard singular value decomposition (SVD), and is used in, for example,
linear discriminant analysis [40], the method of particular solutions [8], general
form Tikhonov regularization [28, Sec. 5.1], and more [1]. Computing the full
GSVD with direct methods can be prohibitively time-consuming for large problem
sizes; however, for many applications is suffices to compute only a few of the

85
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largest or smallest generalized singular values and vectors. As a result, iterative
methods may become attractive when the matrices involved are large and sparse.

An early iterative approach based on a modified Lanczos method was intro-
duced by Zha [95], and later a variation by Kilmer, Hansen, and Español [47].
Both methods are inner-outer methods that require the solution to a least squares
problem in each iteration, which may be computationally expensive. An approach
that naturally allows for inexact solutions is the Jacobi–Davidson-type method
(JDGSVD) introduced in [32]; however, this is still an inner-outer method. Alter-
natives to the previously mentioned methods include iterative methods designed
for (symmetric positive definite) generalized eigenvalue problems, in particular
generalized Davidson [48, 61] and LOBPCG [49]. These methods compute only
the right generalized singular vectors and require additional steps to determine
the left generalized singular vectors. More importantly, applying these methods
involves squaring potentially ill-conditioned matrices.

In this chapter we discuss two new and competitive iterative methods for
the computation of extremal generalized singular values and corresponding
generalized singular vectors. The first can be seen as a generalized Davidson-
type algorithm for the GSVD, while the second method builds upon the first, but
uses multidirectional subspace expansion alongside a fast subspace truncation.
The multidirectional subspace expansion is intended to produce improved search
directions, whereas the subspace truncation is designed to remove low-quality
search directions that are ideally orthogonal to the desired generalized singular
vector. Both methods can be used to compute either the smallest or the largest
generalized singular values of a matrix pair, or to approximate the truncated
GSVD (TGSVD). A crucial part of both methods is a thick restart that allows for
the removal of unwanted elements.

The remainder of this chapter is organized as follows. We derive a generalized
Davidson-type algorithm for the GSVD in the next section, and prove multiple
related theoretical properties. We subsequently discuss a B∗B-orthonormal version
of the algorithm and its connection to JDGSVD in Section 5.3. In Section 5.4,
we examine locally optimal search directions and argue for a multidirectional
subspace expansion followed by a fast subspace truncation; then we present
our second algorithm. In Section 5.5, we explore the deflation of generalized
singular values and generalized singular vectors. We generalize several known
error bounds for the Hermitian eigenvalue problem to results for the generalized
singular value decomposition in Section 5.6. Finally, we consider numerical
examples and experiments in Section 5.7, and end with conclusions in Section 5.8.
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5.2 Generalized Davidson for the GSVD

Triangular and diagonal are two closely related forms of the GSVD. The triangular
form is practical for the derivation and implementation of our methods, while the
diagonal form is particularly relevant for the analysis. We adopt the definitions
from Bai [1], but with a slightly more compact presentation. Let A be an m × n
matrix, B a p×nmatrix, and assume for the sake of simplicity thatN (A)∩N (B) =
{0}; then rank([AT BT ]T ) = n and there exist unitary matrices U, V,W, an m × n
matrix ΣA, a p × n matrix ΣB, and a nonsingular upper-triangular n × n matrix R
such that

(5.1) AW = UΣAR and BW = VΣBR.

The matrices ΣA and ΣB satisfy

Σ
T
AΣA = diag(c21, . . . , c

2
n), Σ

T
BΣB = diag(s21, . . . , s

2
n), Σ

T
AΣA+Σ

T
BΣB = I,

and can be partitioned as

⎡⎢⎢⎢⎢⎢⎣
l (n − p)+ (n − m)+

l DA 0 0

(n − p)+ 0 I 0

(m − n)+ 0 0 0

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣

l (n − p)+ (n − m)+

l DB 0 0

(n − m)+ 0 0 I

(p − n)+ 0 0 0

⎤⎥⎥⎥⎥⎥⎦,
where l = min{m, p, n, m+ p−n}, (·)+ = max{·, 0}, and DA and DB are diagonal
matrices with nonnegative entries. The generalized singular pairs (c j, sj) are
nonnegative and define the regular generalized singular values σ j = ∞ if sj = 0
and σ j = c j/sj otherwise. Hence, we call a generalized singular pair (c j, sj) large
if σ j is large and small if σ j is small, and additionally refer to the largest and
smallest σ j as σmax and σmin, respectively. The diagonal counterpart of (5.1) is

(5.2) AX = UΣA and BX = VΣB with X =WR−1,

and is useful because the columns of X are the (right) singular vectors x j and
satisfy, for instance,

(5.3) s2j A
∗Ax j = c2j B

∗Bx j.
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The assumption N (A) ∩N (B) = {0} is not necessary for the implementation of
our algorithm; nevertheless, we will make this assumption for the remainder of
the chapter to simplify our discussion and analysis. We may also assume without
loss of generality that the desired generalized singular values are contained in
the leading principal submatrices of the factors. Consequently, if k < l and Ck, Sk,
and Rk denote the leading k × k principal submatrices of ΣA, ΣB, and R; and Uk,
Vk,Wk, and Xk denote the first k columns of U, V,W, and X; then Xk = WkR−1

k
and we can define the partial (or truncated) GSVD of (A, B) as

AWk = UkCkRk and BWk = VkSkRk.

We aim is to approximate this partial GSVD for a k ≪ n.
Since (5.3) can be interpreted as a generalized eigenvalue problem, it appears

reasonable to consider the search space

Wk = span{˜x(0), (̃s
2
(0)A

∗A − c̃2
(0)B

∗B)˜x(0),

(̃s2
(1)A

∗A − c̃2
(1)B

∗B)˜x(1), . . . , (̃s
2
(k−1)A

∗A − c̃2
(k−1)B

∗B)˜x(k−1)},

consisting of homogeneous residuals generated by the generalized Davidson
method (c.f., e.g., [61, Sec. 11.2.4] and [48, Sec. 11.3.6]) applied to the matrix
pencil (A∗A, B∗B). The quantities ˜x(j), c̃(j), and s̃(j) are approximations to x1, c1,
and s1 with respect to the search space Wj. The challenge is to compute a basis
Wk with orthonormal columns for Wk without using the products A∗A and B∗B;
however, let us focus on the extraction phase first. We will later see that a natural
subspace expansion follows as a consequence.

GivenWk, we can compute the reduced QR decompositions

(5.4) AWk = UkHk, BWk = VkKk,

where Uk and Vk have k orthonormal columns and Hk and Kk are k × k and
upper-triangular. To compute the approximate generalized singular values, let
the triangular form GSVD of (Hk, Kk) be given by

HkW̃ = ŨC̃R̃, KkW̃ = ṼS̃R̃,

where Ũ, Ṽ, and W̃ are orthonormal, C and S are diagonal, and R is upper
triangular. At this point, we can readily form the approximate partial GSVD

(5.5) A(WkW̃) = (UkŨ)C̃R̃, B(WkW̃) = (VkṼ)S̃R̃,

and determine the leading approximate generalized singular values and vectors.
When the dimension of the search space Wk grows large, a thick restart can be
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performed by partitioning the decompositions in (5.5) as

(5.6)

A
[
WkW̃1 WkW̃2

]
=

[
UkŨ1 UkŨ2

] [
C̃1

C̃2

] [
R̃11 R̃12

R̃22

]
,

B
[
WkW̃1 WkW̃2

]
=

[
VkṼ1 VkṼ2

] [
S̃1

S̃2

] [
R̃11 R̃12

R̃22

]
,

and truncating to

A(WkW̃1) = (UkŨ1)C̃1R̃11, B(WkW̃1) = (VkṼ1)S̃1R̃11.

If there is need to reorder the c j and sj, then we can simply use the appropriate
permutation matrix P and compute

A(WkW̃Q) = (UkŨP)(P∗CP)(P∗RQ),

B(WkW̃Q) = (VkṼP)(P
∗SP)(P∗RQ),

where Q is unitary and such that P∗RQ is upper triangular.
For a subsequent generalized Davidson-type expansion of the search space,

let

˜u1 = UkŨ1e1, ˜v1 = VkṼ1e1, ˜w1 =WkW̃1e1, and ˜x1 = ˜w1/̃r11

be the approximate generalized singular vectors satisfying

A˜x1 = c̃1˜u1 and B˜x1 = s̃1˜v1.

Then the homogeneous residual given by

(5.7) r = (̃s21A
∗A − c̃21B

∗B)˜x1 = c̃1 s̃1(̃s1A
∗
˜u1 − c̃1B

∗
˜v1)

suggests the expansion vector˜r = s̃1A∗˜u1 − c̃1B∗˜v1, which is orthogonal toWk.
The residual norm ∥r∥ goes to zero as the generalized singular value and vector
approximations converge, and we recommend terminating the iterations when
the right-hand side of

(5.8)
∥r∥

(̃s21∥A
∗A∥ + c̃21∥B

∗B∥)∥˜x1∥
≤

√
n |̃r11 | ∥r∥

s̃21∥A
∗A∥1 + c̃21∥B

∗B∥1

is sufficiently small. The left-hand side is the normwise backward error by Tisseur
[88], and the right-hand side is an alternative that can be approximated efficiently;
for example, using the normest1 function in MATLAB, which does not require
computing the matrix products A∗A and B∗B explicitly. The GDGSVD algorithm
is summarized in Algorithm 5.1.
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Algorithm 5.1 (Generalized Davidson for the GSVD (GDGSVD)).
Input:Matrix pair (A, B), starting vectorw0, minimum and maximum dimensions
j < ℓ.
Output: AWj = U jC jR j and BWj = VjSjR j approximating a partial GSVD.
1. Let˜r =w0.
2. for number of restarts and not converged (cf., e.g., (5.8)) do
3. for k = 1, 2, . . . , ℓ do
4. wk =˜r/∥˜r∥.
5. Update AWk = UkHk and BWk = VkKk.
6. Compute Hk = ŨC̃R̃W̃∗ and Kk = ṼS̃R̃W̃∗.
7. Let˜r = s1A∗˜u1 − c1B∗˜v1.
8. if j ≤ k and converged (cf., e.g., (5.8)) then break
9. end

10. Partition Ũ, Ṽ, W̃, C̃, S̃, and R̃ according to (5.6).
11. Let U j = UkŨ1, Vj = VkṼ1, andWj =WkW̃1.
12. Let Hj = C̃1R̃11 and Kj = S̃1R̃11.
13. end

By design, the largest (or smallest) Ritz values are preserved after the restart;
moreover, the generalized singular values increase (or decrease) monotonically
per iteration as indicated by the proposition below. We wish to emphasize that
the proof of the proposition does not require B∗B to be nonsingular, as opposed to
the Courant–Fischer minimax principles for the generalized eigenvalue problem.

Proposition 5.1. Let Wk and Wk+1 be subspaces of dimensions k and k+ 1, respec-
tively, and such that Wk ⊂ Wk+1. If σmax(W) and σmin(W) denote the maximum
and minimum generalized singular values of A and B with respect to the subspace
W , then

σmax ≥ σmax(Wk+1) ≥ σmax(Wk) ≥ σmin(Wk) ≥ σmin(Wk+1) ≥ σmin.

Proof. Both A∗A and B∗B may be singular; therefore, we consider the pencil

(A∗A, A∗A + B∗B) = (A∗A, X−∗X−1)

with generalized eigenvalues c2i and note thatσ2
i = c2i /(1−c

2
i )with the convention

that 1/0 = ∞. Applying the Courant–Fischer minimax principles yields

c1 ≥ max
0,w ∈Wk+1

∥Aw ∥

∥X−1w ∥
≥ max

0,w ∈Wk

∥Aw ∥

∥X−1w ∥

≥ min
0,w ∈Wk

∥Aw ∥

∥X−1w ∥
≥ min

0,w ∈Wk+1

∥Aw ∥

∥X−1w ∥
≥ cn.

□
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Proposition 5.1 implies that if a basisWk for a subspace Wk is computed by
Algorithm 5.1, then

σmax(Wk) = max
0,w ∈Wk

∥Aw ∥

∥X−1w ∥
= max

c,0

∥AWkc∥
∥[AT BT ]TWkc∥

= max
c,0

∥Hkc∥

∥[HT
k KT

k ]
T c∥

;

that is, the largest generalized singular value of the matrix pair (A, B)with respect
to the subspaceWk is the largest generalized singular value of (Hk, Kk). A similar
statement holds for the smallest generalized singular value. Furthermore, the
matrix pair (Hk, Kk) is optimal in the sense of the following proposition.

Proposition 5.2. Let the M-Frobenius norm for a Hermitian positive definite matrix
M be defined as ∥Y ∥2F,M = trace(Y ∗MY ). Now consider the decompositions from
(5.4) and define the residuals

R1(G) = AWk − UkG,

R2(G) = BWk − VkG,

R3(G) = A∗Uk − B∗VkG
∗,

R4(G) = B∗Vk − A∗UkG
∗;

then the following results hold.

1. G = Hk = U∗
kAWk minimizes ∥R1(G)∥2 and is the unique minimizer of

∥R1(Hk)∥F .

2. G = Kk = V∗
k BWk minimizes ∥R2(G)∥2 and is the unique minimizer of

∥R2(Kk)∥F .

3. If B∗B is nonsingular, then G = HkK−1
k minimizes ∥R3(G)∥(B∗B)−1 and is the

unique minimizer of R3 with respect to the (B∗B)−1-Frobenius norm.

4. If A∗A is nonsingular, then G = KkH−1
k minimizes ∥R4(G)∥(A∗A)−1 and is the

unique minimizer of R4 with respect to the (A∗A)−1-Frobenius norm.

Proof. With the observation that A∗Uk = A∗AWkH−1
k and B∗Vk = B∗BWkK−1

k , the
proof becomes a straightforward adaptation of [32, Thm 2.1]. □

Propositions 5.1 and 5.2 demonstrate that the convergence behavior of Al-
gorithm 5.1 is monotonic, and that the computed Hk and Kk are in some sense
optimal for the search space Wk = span(Wk); however, the propositions make
no statement regarding the quality of the subspace expansion. A locally optimal
residual-type subspace expansion can be derived with inspiration from Ye [94].
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Proposition 5.3. Define

Rk = A∗AWk(H
∗
kHk + K∗

kKk)
−1K∗

kKk − B∗BWk(H
∗
kHk + K∗

kKk)
−1H∗

kHk

and let r = Rkc; then

cos2(x1, [Wk r]) = cos2(x1,Wk) + cos2(x1, r)

is maximized for c = R+k x1.

Proof. Since N (A) ∩ N (B) = {0} we also have N (Hk) ∩ N (Kk) = {0}, which
implies that H∗

kHk + K∗
kKk is invertible and Rk is well-defined. Furthermore, it is

now straightforward to verify that

W∗
kRk = H∗

kHk(H
∗
kHk + K∗

kKk)
−1K∗

kKk − K∗
kKk(H

∗
kHk + K∗

kKk)
−1H∗

kHk = 0

using the GSVD of Hk and Kk. It follows that

∥[Wk r]∗x1∥
2 = ∥W∗

k x1∥
2 + |r∗x1 |

2,

which realizes its maximum for c = R+k x1. □

Different choices for Rk in Proposition 5.3 are possible; however, the current
choice does not require additional assumptions on, for instance, Hk and Kk.
Regardless of the choice of Rk, computing the optimal expansion vector is generally
impossible without a priori knowledge of the desired generalized singular vector
x1. Therefore, we expand the search space with a residual-type vector similar
to generalized Davidson. The convergence of generalized Davidson is closely
connected to steepest descent and has been studied extensively; see, for example,
Ovtchinnikov [64, 65] and references therein. For completeness, we add the
following asymptotic bound for the GSVD.

Proposition 5.4. Let (c1, s1) be the smallest generalized singular pair of (A, B)
with corresponding generalized singular vector x1, and assume the pair is simple.
Define the Hermitian positive definite operator M = s21A

∗A− c21B
∗B restricted to the

domain perpendicular to (A∗A + B∗B)x1 = X−∗e1, and let the eigenvalues of M be
given by

λ1 ≥ λ2 ≥ · · · ≥ λn−1 > 0.

Furthermore, let ˜x1, c̃1 = ∥A˜x1∥, and s̃1 = ∥B˜x1∥ approximate x1, c1, and s1,
respectively, and be such that c̃21 + s̃21 = 1. If ˜x1 = ξx1 + f for some scalar ξ and
vector f ⊥ X−∗e1; then

sin2([˜x1 r], x1) ≤

(
κ − 1
κ + 1

) 2

sin2(˜x1, x1) +O(∥ f ∥3),
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where κ = λ1/λn−1 is the condition number of M, and r = (̃s21A
∗A − c̃21B

∗B)˜x1 is
the homogeneous residual.

Proof. We have

c̃21 = ˜x∗1A
∗A˜x1 = ξ

2c21 + ∥A f ∥2 and s̃21 = ˜x∗1B
∗B˜x1 = ξ

2s21 + ∥B f ∥2,

and it follows that

r = ξ2(s21A
∗A−c21B

∗B) f +(∥B f ∥2A∗A−∥A f ∥2B∗B)(ξx1+ f ) = ξ
2M f +O(∥ f ∥2)

and

r∗x1 = ξ f
∗(s21A

∗A − c21B
∗B) f = ξ f ∗M f .

Hence, ˜x1 = x1 if ∥r∥ = 0 for ˜x1 sufficiently close to x1 and we are done.
Otherwise, r is nonzero and perpendicular to ˜x1, so that

sin2([˜x1 r], x1) = 1−cos2(˜x1, x1)−cos
2(r, x1) =

(
1 −

cos2(r, x1)

sin2(˜x1, x1)

)
sin2(˜x1, x1).

Combining the above expressions, and using the fact that nontrivial orthogonal
projectors have unit norm, yields

cos2(r, x1)

sin2(˜x1, x1)
=

|r∗x1 |2

∥r∥2∥(I −˜x1˜x∗1)x1∥
2 ≥

| f ∗M f |2

∥M f ∥2∥ f ∥2
+O(∥ f ∥).

Using the Kantorovich inequality (cf., e.g., [26, p. 68]) we obtain

sin2([˜x1 r], x1) ≤

(
1 −

4λ1λn−1
(λ1 + λn−1)2

)
sin2(˜x1, x1) +O(∥ f ∥ sin2(˜x1, x1))

=

(
κ − 1
κ + 1

) 2

sin2(˜x1, x1) +O(∥ f ∥ sin2(˜x1, x1)).

Finally, c̃21 + s̃21 = 1 implies ∥˜x1∥ ≥ σmin(X), so that

sin(˜x1, x) ≤ σ
−1
min(X) ∥ f ∥ = O(∥ f ∥).

□

The condition number κ from Proposition 5.4 may be large in practice, in
which case the quantity (κ − 1)/(κ + 1) is close to 1. However, this upper bound
may be rather pessimistic and we will see considerably faster convergence during
the numerical tests in Section 5.7.
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5.3 B∗B-orthonormal GDGSVD

In the previous section we have derived the GDGSVD algorithm for an orthonormal
basis of Wk. An alternative is to construct a B∗B-orthonormal basis of Wk, which
allows us to use the SVD instead of the slower GSVD for the projected problem, as
well as reduce the amount of work necessary for a restart. Another benefit is that
the B∗B-orthonormality reveals the connection between GDGSVD and JDGSVD,
a Jacobi–Davidson-type algorithm for the GSVD [32].

The derivation of B∗B-orthonormal GDGSVD is similar to the derivation of
Algorithm 5.1. Suppose that B∗B is nonsingular, let Ŵk be a basis ofWk satisfying
Ŵ∗

k B
∗BŴk = I, and compute the QR-decomposition

(5.9) AŴk = Ûk Ĥk,

where Û has orthonormal columns and Ĥk is upper-triangular. Note that (5.9)
can be obtained from the QR-decompositions in (5.4) by setting Ŵk = WkK−1

k ,

Ûk = Uk, and Ĥk = HkK−1
k . If Ĥk = ŨΣW̃∗ is the SVD of Ĥk; then

A(ŴkW̃) = (ÛkŨ)Σ,

which can be partitioned as

(5.10) A
[
ŴkW̃1 ŴkW̃2

]
=

[
ÛkŨ1 ÛkŨ2

] [
Σ1

Σ2

]
and truncated to AŴkW̃1 = ÛkŨ1Σ1. Withˆu1 = ÛkŨe1 and ˆw1 = ŴkW̃e1 we get
the residual

r = (A∗A − σ2
1B

∗B)ˆw1 = σ1(Aˆu1 − σ1B
∗Bˆw1)

and the expansion vector ˆr = Aˆu1 − σ1B∗Bˆw1. The expansion vector ˆr is or-
thogonal to Ŵk in exact arithmetic, but should in practice still be orthogonalized
with respect to Ŵk prior to B∗B-orthogonalization in order to improve numerical
stability and accuracy [30, Sec. 3.5]. Finally, in the B∗B-orthonormal case the
suggested stopping condition (5.8) becomes

(5.11)
∥r∥

(∥A∗A∥ + σ2
1∥B

∗B∥)∥ˆw1∥
≤

√
n ∥r∥

(∥A∗A∥1 + σ2
1∥B

∗B∥1)∥ˆw1∥
≤ τ

for some tolerance τ. The algorithm is summarized below in Algorithm 5.2, where
V̂k = BŴk has orthonormal columns.
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Algorithm 5.2 (B∗B-orthonormal GDGSVD).
Input:Matrix pair (A, B), starting vectorw0, minimum and maximum dimensions
j < ℓ.
Output: Orthonormal Û j, B∗B-orthonormal Ŵj, and diagonal Σj satisfying AŴj =

Û jΣj.
1. Let Ŵ0 = V̂0 = [] andˆr =w0.
2. for number of restarts and not converged (cf., e.g., (5.11)) do
3. for k = 1, 2, . . . , ℓ do
4. ˆwk = (I − Ŵk−1(Ŵ∗

k−1Ŵk−1)
−1Ŵ∗

k−1)ˆr.
5. Compute ˆvk = Bˆwk.
6. B∗B-orthogonalize: ˆwk = ˆwk − Ŵk−1V̂∗

k−1ˆvk.

7. ˆvk = (I − V̂k−1V̂∗
k−1)ˆvk.

8. ˆwk = ˆwk/∥ˆvk∥ and ˆvk = ˆvk/∥ˆvk∥.
9. Update the QR-decomposition AŴk = Ûk Ĥk.

10. Compute the SVD Ĥk = ŨΣW̃∗.
11. ˆr = A∗Ûk˜u1 − σ1B∗V̂k˜w1.
12. if j ≤ k and converged (cf., e.g., (5.11)) then break
13. end
14. Partition Ũ, Σ, and W̃ according to (5.10).
15. Let Û j = ÛkŨ1, V̂j = V̂kW̃1, and Ŵj = ŴkW̃1.
16. Let Hj = Σ1.
17. end

The product B∗B may be arbitrarily close to singularity, and a severely ill-
conditioned B∗B may prove to be problematic despite the additional orthogo-
nalization step in Algorithm 5.2. Therefore, we would generally advise against
using Algorithm 5.2, and recommend using Algorithm 5.1 and orthonormal bases
instead. However, B∗B-orthonormal GDGSVD relates nicely to JDGSVD on a the-
oretical level, regardless of the potential practical issues. In JDGSVD the search
spaces Ûk and Ŵk are repeatedly updated with the vectors s ⊥ ˆu1 and t ⊥ ˆw1,
which are obtained by solving correction equations. Picking the updates

s = (I −ˆu1ˆu
∗
1)Ar and t = r,

instead of solving the correction equations gives JDGSVD the same subspace
expansions as B∗B-orthogonal GDGSVD. Furthermore, standard extraction in
JDGSVD is performed by computing the SVD of Û∗

kAŴk, which is identical to the
extraction in B∗B-orthonormal GDGSVD. For harmonic Ritz extraction, JDGSVD
uses the harmonic Ritz vectors Ûkc and Ŵkd, where c and d solve

Ŵ∗
k A

∗AŴkd = σ
2Ŵ∗

k B
∗BŴkd and c = σ(Ŵ∗

k A
∗Ûk)

−1Ŵ∗
k B

∗BŴkd.
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The above simplifies to

W̃Σ2W̃∗d = σ2d and c = σŨΣ−1W̃∗d,

for B∗B-orthonormal GDGSVD and produces the same primitive Ritz vectors as
the standard extraction. To summarize, JDGSVD coincides with B∗B-orthonormal
GDGSVD for specific expansion vectors, and there is no difference between stan-
dard and harmonic extraction in B∗B-orthonormal GDGSVD. The difference in
practice between the two methods is primarily caused by the different expan-
sion phases, where GDGSVD uses residual-type vectors and JDGSVD normally
solves correction equations. In the next section we will discuss how the subspace
expansion for GDGSVD may be further improved.

5.4 Multidirectional subspace expansion

While the residual vector r from (5.7) is a practical choice for the subspace
expansion, it is not necessarily optimal. In fact, neither is the vector given by
Proposition 5.3, which is only the optimal “residual-type” expansion vector. In
their most general form, the desired expansion vectors are

(5.12)

a−b, where a = (I−WkW
∗
k )A

∗AWkc⋆ and b = (I−WkW
∗
k )B

∗BWkd⋆,

for some “optimal” choice of c⋆ and d⋆. The following proposition characterizes
c⋆ and d⋆.

Proposition 5.5. Let Rk and r be defined as in Proposition 5.3, and assume that
Rk has full column rank. If R∗

kA
∗AWk and R∗

kB
∗BWk are nonsingular and if s = Skd

with

Sk = (A∗AWk −WkH
∗
kHk)(R

∗
kA

∗AWk)
−1 − (B∗BWk −WkK

∗
kKk)(R

∗
kB

∗BWk)
−1;

then

cos2(x1, [Wk r s]) = cos2(x1,Wk) + cos2(x1, r) + cos2(x1, s)

is maximized for c = R+k x1 and d = S+k x1. Moreover, for any c, d, and scalar t, the
linear combination Rkc + tSkd can be written in the form of (5.12). The mapping
from c and d to c⋆ and d⋆ is one-to-one if t , 0.

Proof. For the first part of the proof, use thatW∗
kRk = W∗

kSk = R∗
kSk = 0. For the

second part, define the shorthand M = H∗
kHk + K∗

kKk and recall that

Rk = A∗AWkM
−1K∗

kKk − B∗BWkM
−1H∗

kHk.
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Hence, for any c, d and scalar t we have

Rkc + tSkd = (I −WkW
∗
k )Rkc + t(I −WkW

∗
k )Skd

= (I −WkW
∗
k )A

∗AWk
(
M−1K∗

kKkc + t(R∗
kA

∗AWk)
−1d

)
− (I −WkW

∗
k )B

∗BWk
(
M−1H∗

kHkc + t(R∗
kB

∗BWk)
−1d

)
= a − b,

where a and b are defined as in (5.12) for the c⋆ and d⋆ satisfying[
c⋆
d⋆

]
=

[
M−1H∗

kHk t(R∗
kA

∗AWk)
−1

M−1K∗
kKk t(R∗

kB
∗BWk)

−1

] [
c

d

]
.

Finally, the matrix above is invertible if

t det

[
(R∗

kA
∗AWk)

−1

(R∗
kB

∗BWk)
−1

]
· det

[
R∗
kA

∗AWkM−1H∗
kHk I

R∗
kB

∗BWkM−1K∗
kKk I

]
, 0,

where the first determinant is nonzero because its subblocks are invertible, and
the second determinant equals

det(R∗
kA

∗AWkM
−1H∗

kHk − R∗
kB

∗BWkM
−1K∗

kKk) = det(R∗
kRk) , 0

since Rk has full column rank. □

Let r and s be two nonzero orthogonal vectors; then the locally optimal search
direction in S = span{r, s} is the projection of the desired generalized singular
vector x1 onto S, and is given by

(5.13)
r∗x1
r∗r

r +
s∗x1
s∗s

s.

The remaining orthogonal direction in S is

(5.14) (x∗1s)r − (x∗1r)s,

which is perpendicular to x1. It is usually impossible to compute the vectors from
Proposition 5.5 and the linear combination in (5.13) without a priori knowledge
of x1. Therefore, the idea is to pick r and s or a and b based on a different criterion,
expand the search space with both vectors, and to rely on the extraction process
to determine a good new search direction. If successful, then (5.14) suggests
that there is at least one direction in the enlarged search space that is (nearly)
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perpendicular to x1. This direction may be removed to avoid excessive growth of
the search space.

For example, we could use the approximate generalized singular pair and
corresponding vectors from Section 5.2 and choose the vectors

a = s̃21(I −WkW
∗
k )A

∗A˜x1 and b = c̃21(I −WkW
∗
k )B

∗B˜x1

for expansion, and set

r = a − b and s = (r∗b)a − (r∗a)b,

since the residual norm ∥r∥ is required anyway. Moreover, this choice ensures
at least the same improvement per iteration as the residual expansion from
generalized Davidson. After the expansion and extraction, a low-quality search
direction may be removed. Below we describe the process in more detail.

In Section 5.2 we have seen that A∗A˜x1 = c̃1A∗˜u1 and B∗B˜x1 = s̃1B∗˜v1; hence,
suppose that Wk+2 is obtained by extending Wk with the A∗˜u1 and B∗˜v1 after
orthonormalization. Then we can compute the reduced QR-decompositions

(5.15) AWk+2 = Uk+2Hk+2 and BWk+2 = Vk+2Kk+2,

and the triangular-form GSVD

Hk+2

[
W̃k+1 ˜wk+2

]
=

[
Ũk+1 ˜uk+2

] [
C̃k+1

c̃k+2

] [
R̃k+1 ˜rk+1,k+2

r̃k+2,k+2

]
,

Kk+2

[
W̃k+1 ˜wk+2

]
=

[
Ṽk+1 ˜vk+2

] [
S̃k+1

s̃k+2

] [
R̃k+1 ˜rk+1,k+2

r̃k+2,k+2

]
,

where we may assume without loss of generality that (̃ck+2, s̃k+2) is the general-
ized singular pair furthest from the desired pair. By combining the partitioned
decompositions above with (5.15), we see that the objective becomes the removal
of span{Wk+2˜wk+2} from the search space. One way to truncate this unwanted
direction from the search space, is to perform a restart conform Section 5.2 and
compute

(5.16)

Uk+2Ũk+1, Vk+2Ṽk+1, Wk+2W̃k+1, C̃k+1R̃k+1, and S̃k+1R̃k+1

explicitly. However, with O(nk2) floating-point operations per iteration, the com-
putational cost of this approach is too high. The key to a faster method is to
realize that we only need to be able to truncate

Uk+2˜uk+2, Vk+2˜vk+2, Wk+2˜wk+2, c̃k+2, and s̃k+2,
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but do not require the matrices in (5.16). To this end, let P, Q, and Z be House-
holder reflections of the form

P = I − 2
pp∗

p∗p
, Q = I − 2

qq∗

q∗q
, and Z = I − 2

zz∗

z∗z
,

with p, q, and z such that

Pek+2 = ˜uk+2, Qek+2 = ˜vk+2, and Zek+2 = ˜wk+2.

Applying the Householder matrices yields

(5.17) A(Wk+2Z) = (Uk+2P)(P
∗Hk+2Z) and B(Wk+2Z) = (Vk+2Q)(Q

∗Kk+2Z),

which can be computed in O(nk) through rank-1 updates. It is straightforward to
verify that the bottom rows of P∗Hk+2Z and Q∗Kk+2Z are multiples of e∗k+2, e.g.,

e∗k+2P
∗Hk+2Z = ˜u

∗
k+2(ŨC̃R̃W̃

∗)Z = c̃k+2r̃k+2,k+2˜w
∗
k+2Z = c̃k+2r̃k+2,k+2e

∗
k+2.

As a result, (5.17) can be partitioned as

A
[
Wk+1 Wk+2˜wk+2

]
=

[
Uk+1 Uk+2˜uk+2

] [
Hk+1 ×

c̃k+2r̃k+2,k+2

]
,

B
[
Wk+1 Wk+2˜wk+2

]
=

[
Vk+1 Vk+2˜vk+2

] [
Kk+1 ×

c̃k+2r̃k+2,k+2

]
,

defining Uk+1, Vk+1,Wk+1, Hk+1, and Kk+1. This partitioning can be truncated to
obtain

(5.18) AWk+1 = Uk+1Hk+1 and BWk+1 = Vk+1Kk+1,

whereUk+1,Vk+1, andWk+1 have orthonormal columns, but Hk+1 and Kk+1 are not
necessarily upper-triangular. The algorithm is summarized below in Algorithm 5.3.

Algorithm 5.3 (Multidirectional GSVD (MDGSVD)).
Input: Matrix pair (A, B), starting vectorsw1 andw2, minimum and maximum
dimensions j < ℓ.
Output: AWj = U jC jR j and BWj = VjSjR j approximating a partial GSVD.
1. SetW0 = [].
2. for number of restarts and not converged (cf., e.g., (5.8)) do
3. for k = 0, 1, . . . , ℓ − 2 do
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4. Letwk+1 = (I −WkW∗
k )wk+1, andwk+1 =wk+1/∥wk+1∥.

5. Letwk+2 = (I −Wk+1W∗
k+1)wk+2 andwk+2 =wk+2/∥wk+2∥.

6. Update the QR-decompositions
AWk+2 = Uk+2Hk+2 and BWk+2 = Vk+2Kk+2.

7. Compute the GSVD Hk+2 = ŨC̃R̃W̃∗ and Kk+2 = ṼS̃R̃W̃∗.
8. Let P, Q, and Z be Householder reflections such that

Pek+2 = ˜uk+2, Qek+2 = ˜vk+2, and Zek+2 =˜zk+2.
9. Let Uk+2 = Uk+2P, Vk+2 = Vk+2Q,Wk+2 =Wk+2Z,

Hk+2 = P∗Hk+2Z, and Kk+2 = Q∗Kk+2Z.
10. wk+2 = A∗˜u1 andwk+3 = B∗˜v1.
11. if j ≤ k and converged (cf., e.g., (5.8)) then break
12. end
13. Partition Ũ, Ṽ, W̃, C̃, S̃, and R̃ according to (5.6).
14. Let U j = UkŨ1, Vj = VkṼ1, andWj =WkW̃1.
15. Let Hj = C̃1R̃11 and Kj = S̃1R̃11.
16. end

Algorithm 5.3 is a simplified description for the sake of clarity. For instance,
the expansion vectors may be linearly dependent in practice, and it may be
desirable to expand a search space of dimension ℓ − 1 with only the residual
instead of two vectors. Another missing feature that might be required in practice
is deflation, which is the topic of the next section.

5.5 Deflation and the truncated GSVD

Deflation is used in eigenvalue computations to prevent iterative methods from
recomputing known eigenpairs. Since Algorithm 5.1 and Algorithm 5.3 compute
generalized singular values and vectors one at a time, deflation may be necessary
for applications where more than one generalized singular pair is required. The
truncated GSVD is an example of such an application. There are at least two
ways in which generalized singular values and vectors can be deflated, namely
by transformation and by restriction. These two approaches have been inspired
by their counterparts for the symmetric eigenvalue problem (cf., e.g., Parlett [68,
Ch. 5]). We only describe the two approaches for m, p ≥ n to avoid clutter, but
note that they can be adapted to the general case.

The restriction approach is related to the truncation described in the previous
section and may be used to deflate a single generalized singular pair at a time.
Suppose we wish to deflate the simple pair (c1, s1) and let the GSVD of (A, B) be
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partitioned as

A =
[
u1 U2

] [
c1

C2

] [
r11 r∗12

R22

] [
w∗

1

W∗
2

]
,

B =
[
v1 V2

] [
s1

S2

] [
r11 r∗12

R22

] [
w∗

1

W∗
2

]
,

where C2 and S2 may be rectangular. Then, with Householder reflections P, Q,
and Z, satisfying

Pu1 = e1, Qv1 = e1, and Zw1 = e1,

it holds that

PAZ =

[
c1r11 ×

Â

]
and QBZ =

[
s1r11 ×

B̂

]
,

defining Â and B̂. At this point, the generalized singular pairs of (Â, B̂) are the
generalized singular pairs of (A, B) other than (c1, s1). Additional generalized
singular pairs can be deflated inductively.

An alternative that allows for the deflation of multiple generalized singular
pairs simultaneously is the restriction approach. To derive this approach, let the
GSVD of (A, B) be partitioned as

(5.19)

A =
[
U1 U2

] [
C1

C2

] [
R11 R12

R22

] [
W∗

1

W∗
2

]
,

B =
[
V1 V2

] [
S1

S2

] [
R11 R12

R22

] [
W∗

1

W∗
2

]
,

where C1 and S1 are square and must be deflated, while C2 and S2 may be
rectangular and must be retained. Therefore, the desired generalized singular
pairs are deflated by working with the operators

(5.20)
Â = U2C2R22W

∗
2 = U2U

∗
2AW2W

∗
2 = (I − U1U

∗
1)A(I −W1W

∗
1 ),

B̂ = V2S2R22W
∗
2 = V2V

∗
2 BW2W

∗
2 = (I − V1V

∗
1 )B(I −W1W

∗
1 ),

restricted to W2 = span{W2}. An important benefit of this approach is that the
restriction may be performed implicitly during the iterations. For example, if
(5.6) is such that

UkŨ1 = U1, VkṼ1 = V1, WkW̃1 =W1, C̃1 = C1, S̃1 = S1, and R̃11 = R11;
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then

ÂWkW̃2 = UkŨ2C̃2R̃22 and B̂WkW̃2 = VkṼ2S̃2R̃22,

where the right-hand sides are available without explicitly working with Â and
B̂. In addition, if we define the approximations for the next generalized singular
pair and corresponding vectors as

α = e∗1C̃2e1, β = e∗1S̃2e1, ρ = e∗1R̃22e1,

˜u = UkŨ2e1, ˜v = VkṼ2e1, ˜w =WkW̃2e1,

cf. Section 5.2, and

˜x = ρ−1WkW̃

[
R̃−1
11 R̃12e1
e1

]
= ρ−1(WkW̃1R̃

−1
11 R̃12e1 + ˜w);

then the residual

r = ρ−1(β2 Â∗Â − α2 B̂∗ B̂)˜w = αβ(β Â∗˜u − α B̂∗˜v )

= αβ(βA∗˜u − αB∗˜v ) = (β2A∗A − α2B∗B)˜x

and expansion vector(s) can also be computed without Â and B̂.
It may be instructive to point out that the restriction approach for deflation

corresponds to a splitting method for general form Tikhonov regularization
described in [34] and references. This method separates the penalized part
of the solution from the unpenalized part associated with the nullspace of the
regularization operator, essentially deflating specific generalized singular values
and vectors. Consider, for instance, the minimization problem

argmin
x

∥Ax − b∥2 + µ∥Bx∥2

for some µ > 0. Assume for the sake of simplicity that p ≥ n, adding zero rows
to B if necessary, and suppose thatW1 is a basis for the nullspace of B; then we
obtain

(5.21)
∥Ax − b∥2 + µ∥Bx∥2 = ∥U1U

∗
1AW1W

∗
1 x − (U1U

∗
1b − U1U

∗
1AW2W

∗
2 x)∥

2

+ ∥U2U
∗
2AW2W

∗
2 x − U2U

∗
2b∥

2 + µ∥V2V
∗
2 BW2W

∗
2 x∥

2

by following the splitting approach and using that U2U∗
2AW1W∗

1 x = 0. Further-
more, with y1 =W∗

1 x and y2 =W∗
2 x, the first part of the right-hand side of (5.21)

reduces to

∥(U∗
1AW1)y1 − (U∗

1b − U∗
1AW2y2)∥

2 = ∥R11y1 − U∗
1(b − AW2y2)∥

2,
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which vanishes for y1 = R−1
11U

∗
1(b − AW2y2). The remaining part may be written

as

∥ ÂW2y2 − U2U
∗
2b∥

2 + µ∥ B̂W2y2∥
2,

where we recognize the deflated matrices from (5.20). A similar expression can be
derived for deflation through restriction, but does not provide additional insight.

5.6 Error analysis

In this section we are concerned with the quality of the computed approximations,
and develop Rayleigh–Ritz theory that is useful for the GSVD. In particular, we
will generalize several known results for the n× n standard Hermitian eigenvalue
problem to the Hermitian positive definite generalized eigenvalue problem

(5.22) Nx = λMx, M > 0, M = L2,

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. This generalized problem is applicable
in our context with N = A∗A and M = X−∗X−1 if we are interested in the
largest generalized singular values, or with N = B∗B and M = X−∗X−1 if we are
interested in the smallest generalized singular values; and corresponds to the
standard problem

(5.23) L−1NL−1y = λy, y = Lx,

with the same eigenvalues. Hence, if the subspace W is a search space for (5.22),
then it is natural to consider Z = LW as a search space for (5.23) and to
associate every approximate generalized eigenvectorw ∈ W with an approximate
eigenvector z = Lw ∈ Z. The corresponding Rayleigh quotients satisfy

(5.24) θ =
w∗Nw
w∗Mw

=
z∗L−1NL−1z

z∗z

and define the approximate eigenvalue θ.
Key to extending results for the generalized problem (5.23) to results for the

standard problem (5.22), is to introduce generalized sines, cosines, and tangents,
with respect to the M-norm defined by ∥x∥2M = x∗Mx = ∥Lx∥2. Generalizations
of these trigonometric functions have previously been considered by Berns–
Müller and Spence [6], and the generalized tangent can also be found in [68,
Thm. 15.9.3]; however, we believe the treatment and results presented here to
be new. The regular sine for two nonzero vectors y and z can be defined as

sin(z, y) =



(I − zz∗
z∗z

)
y




∥y∥
=



(I − yy∗

y∗y

)
z




∥z∥
,
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where it is easily verified that the above two expressions are equal indeed. Sub-
stituting Lx for y and Lw for z yields the M-sine defined by

sinM(w, x) = sin(Lw, Lx) =



(I − ww∗M
w∗Mw

)
x



M

∥x∥M
=



(I − xx∗M
x∗Mx

)
w




M

∥w ∥M
.

Again, it may be checked that the above two expressions are equal. The regular
cosine is given by

cos(z, y) =



 zz∗
z∗z y




∥y∥

=



 yy∗

y∗y z




∥z∥
=

|z∗y |
∥z∥ ∥y∥

,

and with the same substitution we find the M-cosine

cosM(w, x) = cos(Lw, Lx) =



ww∗M
w∗Mw x




M

∥x∥M
=



 xx∗M
x∗Mxw




M

∥w ∥M
=

|w∗Mx |
∥w ∥M ∥x∥M

.

The M-tangent is now naturally defined as tanM(w, x) = sinM(w, x)/cosM(w, x).
We can derive the M-sines, M-cosines, and M-tangents between subspaces and
vectors with a similar approach. For instance, letW and LW denote bases for W
and Z, respectively; then

sin(Z, y) =



(I − yy∗

y∗y

)
Z(Z∗Z)−1Z∗y




∥Z(Z∗Z)−1Z∗y∥

and cos(Z, y) =
∥Z(Z∗Z)−1Z∗y∥

∥y∥
,

so that

sinM(W, x) = sin(LW, Lx) =



(I − xx∗M
x∗Mx

)
W(W∗MW)−1W∗Mx




M

∥W(W∗MW)−1W∗Mx∥M
,

cosM(W, x) = cos(LW, Lx) =
∥W(W∗MW)−1W∗Mx∥M

∥x∥M
,

and tanM(W, x) = sinM(W, x)/cosM(W, x). It is important to note that sinM ,
cosM , and tanM can all be computed without the matrix square root L of M.

Since our M-sines, M-cosines, and M-tangents equal their regular counter-
parts, the extension of several known results for the standard problem (5.23) to
results for the generalized problem (5.22) is immediate. Below is a selection of
error bounds, where we assume that the largest generalized eigenpair (λ1, x1) is
simple and is approximated by the Ritz pair (θ1,w1) of (5.22) with respect to
the search space W .
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Proposition 5.6 (Generalization of, e.g., [68, Lemma 11.9.2]).

sin2M(w1, x1) ≤
λ1 − θ1
λ1 − λ2

.

Proposition 5.7 (Generalization of [79, Thm. 2.1]).

λ1 − θ1 ≤ (λ1 − λn) sin
2
M(W, x1).

The two propositions imply thatw1 → x1 when θ1 → λ1, with θ1 tending to λ1
when sin(W, x1) → 0. The next corollary is a straightforward consequence.

Corollary 5.8 (Generalization of [79, Thm. 2.1]).

sin2M(w1, x1) ≤
λ1 − λn
λ1 − λ2

sin2M(W, x1) =
(
1 +
λ2 − λn
λ1 − λ2

)
sin2M(W, x1).

As a result of Corollary 5.8, we can expect sinM(w1, x1) to be close to sinM(W, x1)
if the eigenvalue λ1 is well separated from the rest of the spectrum. A sharper
bound can be obtained by generalizing the optimal bound from Sleijpen, Eshof,
and Smit [79].

Proposition 5.9 (Generalization of [79, Thm. 3.2]). Let (θ j,w j) denote the Ritz
pairs of the generalized problem (5.22) with respect to W , and define

δW = min sinM(w j, x1)

as the smallest of all M-sines between the Ritz vectors w j and the generalized
eigenvector x1. Furthermore, define for any ϵ > 0 the maximum

δk(ϵ) = max
W

{δW | dim(W) = k, sinM(W, x1) ≤ ϵ}.

If (θW,wW) is the Ritz pair for which δW is realized and

0 ≤ ϵ < (λ1 − λ2)/(λ1 − λn);

then θW = θ1 > λ2 and

δ2k(ϵ) =
1
2
(1 + ϵ2) −

1
2

√
(1 − ϵ2)2 − κϵ2 with κ =

(λ2 − λn)
2

(λ1 − λn)(λ1 − λ2)
,

for all k ∈ {2, . . . , n − 1}.

The quantity δ2k(ϵ) is not particularly elegant, but is sharp and can be used to ob-
tain the following upper bound, which is sharper than the bound in Corollary 5.8.
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Corollary 5.10 (Generalization of [79, Cor. 3.3]). If the conditions in Proposi-
tion 5.9 are satisfied, then

sin2M(w1, x1) ≤ sin2M(W, x1) +
κ

2
tan2M(W, x1).

Now that we have extended a number of results for the standard problem
(5.23) to the generalized problem (5.22), it may be worthwhile to bound the
generalized sine sinM in terms of the standard sine.

Proposition 5.11. Let κ = κ(M) be the condition number of M, then

1
κ
sin2(w, x) ≤ sin2M(w, x) ≤

1
4
(κ + 1)2 sin2(w, x).

Proof. Without loss of generality we assume ∥w ∥ = ∥x∥ = 1, so that

λmin(M) ≤ ∥x∥2M ≤ λmax(M).

The first inequality follows from

sin2(w, x) =


(I −ww∗)

(
I − ww∗M

w∗Mw

)
x


2

≤ ∥x∥2M



(I − ww∗M
w∗Mw

)
x


2

(I − ww∗M

w∗Mw

)
x


2
M

sin2M(w, x) ≤
λmax(M)

λmin(M)
sin2M(w, x).

For the second inequality, it follows from, e.g., [87] that



I − ww∗M
w∗Mw





 = 



ww∗M
w∗Mw





 = ∥Mw ∥

w∗Mw
= cos−1(w, Mw) ≤ µ−1,

where µ−1 is the inverse of the first anti-eigenvalue [26, Ch. 3.6]

µ = min
∥w ∥=1

w∗Mw
∥Mw ∥

.

By applying Kantorovich’ inequality we find [26, p. 68]

µ−1 =
1
2
λmin(M) + λmax(M)√
λmin(M) λmax(M)

=
1
2
κ + 1
√
κ
.

Finally, by combining the above and using(
I −

ww∗M
w∗Mw

)
=

(
I −

ww∗M
w∗Mw

)
(I −ww∗)x,
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we see that

sin2M(w, x) =



(I − xx∗M
x∗Mx

)
x


2
M

∥x∥2M
≤
λmax(M)

λmin(M)



(I − ww∗M
w∗Mw

)
x


2

≤ κ


I − ww∗M

w∗Mw



2 ∥(I −ww∗)x∥2 ≤
1
4
(κ + 1)2 sin2(w, x),

which concludes the proof. □

An interesting observation about sinM in the context of the GSVD is that
∥ f ∥ from Proposition 5.4 equals sinM(˜x1, x1) if M = A∗A + B∗B = X−∗X−1.
Furthermore, it has been shown in the proof of Proposition 5.4 that the error in
c̃21 = ∥A˜x1∥2 and s̃21 = ∥B˜x1∥2 is quadratic in ∥ f ∥. An alternative is to express the
approximation error in terms of the residual. We have, for example, the following
straightforward Bauer–Fike-type result.

Proposition 5.12 (Bauer–Fike for the GSVD). Let (̃c, s̃) be an approximate gener-
alized singular pair with corresponding generalized singular vector ˜x and residual

r = (̃s2A∗A − c̃2B∗B)˜x;

then there exists a generalized singular pair (c⋆, s⋆) of (A, B) such that

|̃s2c2⋆ − c̃2s2⋆| ≤ ∥X ∥2
∥r∥
∥˜x∥
.

Proof. The result follows from

∥r∥
∥˜x∥

≥ σmin(̃s
2A∗A − c̃2B∗B)

= σmin(X
−∗(̃s2ΣTAΣA − c̃2ΣTBΣB)X

−1) ≥ σ2
min(X

−1)min
j

|̃s2c2j − c̃2s2j |.

□

An additional interesting observation is that if c̃ and s̃ are scaled such that
c̃2 + s̃2 = c2⋆ + s2⋆ = 1, and the generalized singular values are given by σ̃ = c̃/̃s
and σ⋆ = c⋆/s⋆; then

|̃s2c2⋆ − c̃2s2⋆| = |̃s2 − s2⋆| = |c2⋆ − c̃2 | =

���� σ̃2

1 + σ̃2 −
σ2
⋆

1 + σ2
⋆

���� ,
with the conventions ∞/∞ = 1 and ∞−∞ = 0.
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The bound in Proposition 5.12 may be rather pessimistic, and we expect
asymptotic convergence of order ∥r∥2 due to the relation with the symmetric
eigenvalue problem. It turns out that the desired result is easily generalized using
the M-sine and the M−1-norm. Specifically, let θ be defined as in (5.24) and
define the residual norms

ρ(z) = ∥(L−1NL−1 − θI)z∥ and ρM(w) = ρ(Lw) = ∥(N − θM)w ∥M−1;

then we can immeadiately derive the following proposition.

Proposition 5.13 (Generalization of, e.g., [68, Thm. 11.7.1, Cor. 11.7.1]). Sup-
pose λ1 − θ1 < θ1 − λ2; then

ρM(w1)

λ1 − λn
≤ sinM(w1, x1) ≤ tanM(w1, x1) ≤

ρM(w1)

θ1 − λ2

and

ρ2M(w1)

λ1 − λn
≤ λ1 − θ1 ≤

ρ2M(w)

θ1 − λ2
.

Having the M−1-norm for the residual instead of the M-norm might be surprising;
however, the former is a natural choice in this context; see, e.g., [68, Ch. 15].
Moreover, Proposition 5.13 combined with the norm equivalence

σ−1
max(M) ∥r∥2 ≤ ∥r∥2M−1 ≤ σ

−1
min(M) ∥r∥2

implies that the converence of the generalized singular values must be of order
∥r∥2. This result is verified in an example in the next section.

5.7 Numerical experiments

In this section we compare our new algorithms to JDGSVD and Zha’s modified
Lanczos algorithm by using tests similar to the examples found in [32] and Zha
[95]. Additionally, we will apply Algorithm 5.1 and Algorithm 5.3 to general
form Tikhonov regularization by approximating truncated GSVDs for several test
problems. The first set of examples is detailed below.

Example 5.1. Let A = CD and B = SD be two n × n matrices, where

C = diag(c j), c j = (n − j + 1)/(2n), S =
√
I − C2,

D = diag(d j), d j = ⌈j/(n/4)⌉ + rj,

with rj drawn from the standard uniform distribution on the open interval (0, 1).
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Example 5.2. Let C and S be the same as in Example 5.1. Furthermore, let
A = UCD̃W∗ and B = VSD̃W∗, where U, V, and W are random orthonormal
matrices, and D̃ = diag(d̃ j) with

d̃ j = d j − min
1≤ j≤n

d j + 10−κ .

Three values for κ are considered, (a) κ = 6, (b) κ = 9, and (c) κ = 12.

Example 5.3. Let C and S be the same as in Example 5.1, and let D̃ be the same
as in Example 5.2. Let f , g, and h be random vectors on the unit (n − 1)-sphere,
and set

A = (I − 2 f f ∗)CD̃(I − 2hh∗) and B = (I − 2gg∗)SD̃(I − 2hh∗).

Note that I − 2 f f ∗, I − 2gg∗, and I − 2hh∗ are Householder reflections.

Example 5.4. Let

A = sprand(n, n, 1e-1, 1) and B = sprand(n, n, 1e-1, 1e-2),

where sprand is the MATLAB function with the same name.

Table 5.1: The median number of matrix-vector products the algorithms require for
Examples 5.1–5.4 to compute an approximation satisfying (5.25). The tolerance
τ = 10−3 was used for Zha’s modified Lanczos algorithm, while τ = 10−6 was used
for the remaining algorithms. The symbol − indicates a failure to converge up to
the desired tolerance within the maximum number of iterations specified in the text,
and the column Cond contains the condition numbers of [AT BT ]T .

Alg Zha JDGSVD GDGSVD MDGSVD

Ex Cond σmax σmin σmax σmin σmax σmin σmax σmin

5.1 4.97e+00 3390 − 1524 6188 580 3072 502 730

5.2a 3.99e+06 19082 − 2008 5396 992 2326 1054 622

5.2b 3.99e+09 19082 − 2008 5396 998 2312 1036 628

5.2c 3.99e+12 19082 − 2008 5374 998 2312 1030 622

5.3a 3.99e+06 17810 − 1964 5418 996 2318 1048 616

5.3b 3.99e+09 17810 − 1964 5418 996 2288 1036 616

5.3c 3.99e+12 17810 − 1964 5418 996 2288 1048 628

5.4 1.41e+00 − 1262 − − 2334 244 2314 240

We generate the matrices from Examples 5.1–5.4 for n = 1000, allowing us
to verify the results. For Algorithm 5.1 and Algorithm 5.3 we set the minimum
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dimension to 10, the maximum dimension to 30, and the maximum number of
restarts to 100. For JDGSVD we use the same minimum and maximum dimensions
in combination with a maximum of 10 and 1000 inner and outer iterations, respec-
tively. Furthermore, we let JDGSVD use standard extraction to find the largest
generalized singular value, and refined extraction to find the smallest generalized
singular value. We have implemented Zha’s modified Lanczos algorithm with
LSQR, and let LSQR use the tolerance 10−12 and a maximum of ⌈10

√
n⌉ = 320

iterations. The maximum number of outer-iterations for the modified Lanczos
algorithm is 100.

2000 4000 6000
10−17

10−8

101

#MVs

|̃s
2
c2 m

ax
−
c̃2
s2 m
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|

5.1
5.2b
5.3b
5.4

500 1000 1500
10−18

10−9

100

#MVs

|̃s
2
c2 m

in
−
c̃2
s2 m

in
|

5.1
5.2b
5.3b
5.4

Figure 5.1: The convergence history of MDGSVD as the errors from (5.25) compared
to the number of matrix-vector products, with results for the largest (left) and
smallest (right) generalized singular pairs.

We run each test with 500 different starting vectors, and record the number
of matrix-vector products required until an approximate generalized singular pair
(̃c, s̃) satisfies

(5.25) |̃s2c2max − c̃2s2max | < τ or |̃s2c2min − c̃2s2min | < τ,

where we use τ = 10−3 for Zha’s modified Lanczos algorithm and τ = 10−6

for the remaining algorithms. The median results are shown in Table 5.1. We
notice that the convergence of Zha’s method is markedly slower here than in
[95]. Additional testing has indicated that the difference is caused by the larger
choice of n, which in turn decreases the gap between the generalized singular
pairs. JDGSVD does not require accurate solutions from the inner iterations and
is significantly faster, but fails to converge to a sufficiently accurate solution in the
last example. Compared to JDGSVD, GDGSVD approximately reduces the number
of matrix-vector multiplications by a factor of 2 for σmax and by a factor of 2 to 2.4
for σmin, and has no problem finding a solution for the last example. MDGSVD
performs only slightly worse than GDGSVD for the largest generalized singular
pairs on average, but uses approximately 4 times fewer MVs than GDGSVD for
the smallest generalized singular pairs in almost all tests.
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Figure 5.2: The errors of the largest (left) and smallest (right) generalized singular
pairs approximations compared to the square of the relative residual norm in the
right-hand side of (5.8). The results are for Example 5.2a and MDGSVD.

Figure 5.1 shows the convergence of MDGSVD. The monotone behavior and
asymptotic linear convergence of the method are clearly visible. We can also see
that the asymptotic convergence is significantly better than the worst-case bound
from Proposition 5.4. Figure 5.2 shows a comparison between the relative residual
norm (5.8) and the convergence of the generalized singular pairs for Example 5.2a.
The results for the other examples are similar, and are therefore omitted. Although
the graphs belonging to the smallest generalized singular pairs suggest temporary
misconvergence, the comparison still demonstrates that (5.8) is an asymptotically
suitable indicator for the convergence of the generalized singular pairs. Moreover,
the convergence of the generalized singular pairs appears to be quadratic in the
residual norm.

Example 5.5. Given a large, sparse, and ill-conditioned matrix A, consider the
problem of reconstructing exact data x⋆ from measured data b = Ax⋆+ e, where
e is a noise vector. A regularized solution may be determined with general form
Tikhonov regularization by computing

xµ = argmin
x

∥Ax − b∥2 + µ∥Bx∥2

for some operator B with N (A) ∩N (B) = {0}, and some parameter µ > 0. For
the purpose of this example, we take several n×nmatrices A and length n solution
vectors x⋆ from Regularization Tools [27], and for B we use the (n− 1) × n finite
difference operator

B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1
. . .

. . .

1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The entries of the noise vectors e are independently drawn from the standard
normal distribution, after which the vector e is scaled such that ϵ = E[∥e∥] =
0.01∥b∥. We select the parameters µ such that ∥Axµ − b∥ = ηϵ, where η =
1 + 3.090232/

√
2n so that ∥e∥ ≤ ηϵ with probability 0.999; see also (4.17).

Consider Example 5.5, where we can write xµ as

xµ = X(Σ∗AΣA + µΣ
∗
BΣB)

−1
Σ
∗
AU

∗b =
n∑
i=1

ci
c2i + µs

2
i

xiu
∗
i b.

For large-scale problems with rapidly decaying ci and multiple right-hand sides
b, it may attractive to approximate the truncated GSVD and compute the above
summation only for a few of the largest generalized singular pairs and their
corresponding generalized singular vectors. In particular, we use our GDGSVD
and MDGSVD methods to approximate the truncated GSVD consisting of the 15
largest generalized singular pairs and vectors. We use minimum and maximum
dimensions 15 and 45, respectively, and a maximum of 100 restarts. We deflate or
terminate when the right-hand side of (5.8) is less than 10−6, and seed the search
space with the nullspace of B spanned by the vector (1, . . . , 1)T . We consider
two different cases. In the first case, we deflate the seeded vector and terminate
as soon as the relative residual for the second largest generalized singular pair
is sufficiently small. In the second case we deflate the seeded vector plus four
additional vectors, and terminate when the relative residual corresponding to the
sixth largest generalized singular pair is less than 10−6. We use the approximated
truncated GSVDs to compute xµ, and compare it with the solution obtained with
the exact truncated GSVD.

The experiments are repeated with 1000 different initial vectors and noise
vectors, and the median results are reported in Table 5.2 and Table 5.3. Test
problems Deriv2-{1,2,3} all use the same matrix A, but have different right-hand
sides and solutions; the same is true for Gravity-{1,2,3}. Test problems Heat-{1,5}
have the same solutions, but different A and b. The tables show a reduction
in the required number of matrix-vector products for multidirectional subspace
expansion, with reduction factors approximately between 1.25 to 2.15 or better
in the majority of cases. However, the reduced number of matrix-vector products
may come at the cost of an increased relative error in the reconstructed solution
and an increased angle between the exact and approximated generalized singular
vector x2, although not consistently.
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Table 5.3: Truncated GSVD tests and results similar to Table 5.2, but in this case
with the approximation of the five largest generalized singular pairs after the pair
(1, 0) corresponding to the nullspace of the regularization operator.

Alg GDGSVD MDGSVD

Ex sin (x2,˜x2) Rel. Err. #MV sin (x2,˜x2) Rel. Err. #MV

Baart 1.82e − 6 3.19e − 6 1996 2.61e − 8 1.51e − 7 74

Deriv2-1 8.03e − 6 8.99e − 6 6088 6.54e − 6 1.08e − 5 3604

Deriv2-2 8.03e − 6 3.52e − 6 6088 6.54e − 6 4.03e − 6 3604

Deriv2-3 8.03e − 6 6.25e − 5 6088 6.54e − 6 4.25e − 5 3604

Foxgood 6.91e − 6 3.36e − 6 6808 1.07e − 5 5.20e − 6 5485

Gravity-1 1.93e − 6 1.14e − 5 5600 4.85e − 6 4.10e − 5 4012

Gravity-2 1.93e − 6 3.11e − 5 5600 4.85e − 6 3.50e − 5 4012

Gravity-3 1.93e − 6 8.39e − 6 5600 4.85e − 6 1.86e − 5 4012

Heat-1 2.70e − 6 2.82e − 2 7520 5.14e − 6 4.74e − 2 1948

Heat-5 7.92e − 6 4.63e − 2 6676 2.92e − 6 2.48e − 2 1804

Phillips 4.74e − 6 3.49e − 4 5912 2.30e − 6 1.63e − 4 3574

Shaw 1.91e − 6 6.51e − 5 5772 2.67e − 6 1.80e − 4 5620

Wing 8.33e − 6 4.16e − 6 5292 1.44e − 5 7.26e − 6 4618

5.8 Conclusion

We have discussed two iterative methods for the computation of a few extremal
generalized singular values and vectors. The first method can be seen as a gener-
alized Davidson-type method, and the second as a further generalization. Specif-
ically, the second method uses multidirectional subspace expansion combined
with a truncation phase to find improved search directions, while ensuring mod-
erate subspace growth. Both methods allow for a natural and straightforward
thick restart. We have also derived two different methods for the deflation of
generalized singular values and vectors.

We have characterized the locally optimal search directions and expansion
vectors in both the generalized Davidson method and the multidirectional method.
Note that these search directions generally cannot be computed during the it-
erations. The inability to compute these optimal search directions motivates
multidirectional subspace expansion and its reliance on the extraction process,
as well as the removal of low-quality search directions. We have argued that our
methods can still achieve (asymptotic) linear convergence and have provided
asymptotic bounds on the rate of convergence. Additionally, we have shown that
the convergence of both methods is monotonic, and have concluded the theoreti-
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cal analysis by developing Rayleigh–Ritz theory and generalizing known results
for the Hermitian eigenvalue problem to the Hermitian positive definite general-
ized eigenvalue problem that corresponds to the GSVD.

The theoretical convergence behavior is supported by our numerical experi-
ments. Moreover, the numerical experiments demonstrate that our generalized
Davidson-type method is competitive with existing methods, and suitable for
approximating the truncated GSVD of matrix pairs with rapidly decaying general-
ized singular values. Significant additional performance improvements may be
obtained by our new multidirectional method.





Chapter 6

Conclusion

We have seen in Chapter 2 that matrix balancing may be useful for generating
high-quality field of value based spectral inclusion regions. Furthermore, these
inclusion regions can be approximated efficiently when balancing is combined
with projections onto Krylov subspaces. The combination of Krylov subspaces
and balancing leads naturally to our new “Krylov and balance” (K+B) approach,
which is computationally cheap and typically yields excellent results. Another
benefit is that the K+B approach is matrix free; however, there are disadvantages
as well. Most notably, the K+B approach cannot be used to compute the diagonal
scaling matrix for the original full-size matrix and may, in rare situations, com-
pute inclusion regions that are too small. Possible future research may include
balancing and field of values based inclusion regions for the generalized eigen-
value problem, quadratic eigenvalue problem, and the polynomial eigenvalue
problem; see, e.g., [33, 54].

In Chapter 3 we have presented a two-sided Krylov–Schur method as a natural
generalization of the one-sided Krylov–Schur approach by Stewart, and as a
more stable alternative to the two-sided Lanczos algorithm. In addition to the
advantages and disadvantages mentioned in Section 3.9, we would like to state
that there is no benefit in using two-sided Krylov–Schur for Hermitian matrices.
Furthermore, we do not expect any major advantages of two-sided Krylov–Schur
over one-sided Krylov–Schur when only computing exterior eigenvalues. Instead,
our two-sided method shows its strengths primarily in applications where left and
right eigenvectors or eigenspaces are required simultaneously. It could be useful
and interesting if future research provides us with more insight when two-sided
Krylov–Schur may be expected to yield better results or performance than its
one-sided counterpart.

We have introduced a new method in Chapter 4 for large-scale Tikhonov regu-
larization that combines a new multidirectional subspace expansion with optional
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truncation in order to produce a higher quality search space. The multidirectional
expansion generates a richer search space, whereas the truncation ensures mod-
erate growth. In addition, we have discussed a straightforward parameter choice
for multiparameter regularization, that satisfies the discrepancy principle and
is based on easy to compute derivatives. Although it is not clear how to extend
the parameter selection from this chapter to non-smooth regularization terms,
research in automatic parameter selection for more general regularization terms
could prove valuable.

In Chapter 5 we have derived two competitive methods, for computing ex-
tremal generalized singular values and vectors, as well as for approximating the
truncated generalized singular value decomposition of matrix pairs with rapidly
decaying generalized singular values. The first method can be seen as a gener-
alized Davidson-type method, while the second method builds upon the multi-
directional subspace expansion and truncation from the previous chapter. The
idea is again to find improved search directions in each iteration with multidirec-
tional subspace expansion, while ensuring moderate subspace growth with a fast
truncation phase. Both of our new methods allow for natural and straightforward
thick restarts, which are essential parts of Algorithms 5.1 and 5.3. Numerical
experiments suggest that the latter two algorithms have the potential to become
“methods of choice”, although the current lack of preconditioning might be a
disadvantage. Future work may include adapting the multidirectional subspace
expansion and truncation to different matrix decompositions.
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Summary

Generalized Krylov methods for large-scale matrix problems

This dissertation concerns the development of new Krylov subspace methods for
large-scale (generalized) matrix problems. Of particular interest are standard
eigenvalue problems, generalized singular value problems, and general form
regularization problems, which commonly emerge in various fields of natural
and applied sciences. The focus is on applications where the matrices are large
enough that using direct methods is no longer feasible, and structured enough
to facilitate fast matrix-vector products; that is, applications suitable for Krylov
methods.

Four main subjects are considered in this dissertation: matrix balancing for
field of value type inclusion regions, two-sided Krylov–Schur restarts, multidirec-
tional subspace expansion for generalized and multiparameter Tikhonov regu-
larization, and multidirectional subspace expansion for computing generalized
singular values and vectors.

The field of values of a matrix is convex, guaranteed to contain all eigenvalues,
and its boundary is often tight around the eigenvalues and can be approximated
efficiently. Therefore, using the field of values as an inclusion region may be an
attractive alternative in an exploratory phase to computing eigenvalues. However,
occasionally the numerical radius of amatrix is much larger than its spectral radius,
which makes the field of values meaningless as an inclusion region. We show that
in this case, the quality of the field of values as an inclusion region may often be
improved by balancing the matrix. Balancing is an existing technique designed
to decrease the disparity between row and column norms through a carefully
constructed diagonal similarity transform. Several interesting connections with
the nonnormality of matrices are investigated and emphasized. Moreover, we
propose a new, simple, and fast balancing methodology for computing spectral
inclusion regions, where the Hessenberg matrix resulting from the Arnoldi process
is balanced and used to approximate the field of values. The effectiveness of the
method is demonstrated with numerical experiments.
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130 6. Summary

Next, we derive two-sided Krylov–Schur as an extension of the Krylov–Schur
restarting method to the two-sided Arnoldi method for large-scale nonnormal
matrices. This extension allows for the simultaneous approximation of left and
right eigenvectors, and thus eigenvalue condition numbers, while working exclu-
sively with orthonormal bases. Specifically, two-sided Krylov–Schur maintains
orthonormal bases for a separate left and right Krylov subspace, and applies only
orthonormal transformations to these bases during the restarts. We may therefore
expect better numerical stability compared to unsymmetric Lanczos if the method
is carefully implemented. We describe algorithms for both standard Ritz extrac-
tion and harmonic Ritz extraction, and present several error bounds. Numerical
examples where we compute the least sensitive eigenvalues or use the left and
right shift-invariant subspace bases to approximate pseudospectra illustrate the
usefulness of two-sided Krylov–Schur.

Generating high-quality search spaces for generalized Tikhonov regularization
and multiparameter Tikhonov regularization may be challenging. In the latter
case, selecting suitable regularization parameters may also be challenging. We
introduce a new method for large-scale multiparameter Tikhonov regularization
with general regularization operators. The method works by repeatedly extend-
ing the search space in multiple directions, similar to generalized Krylov, and
subsequently removing the less promising directions to ensure moderate growth
of the search space. Moreover, we propose a discrepancy principle based para-
meter selection strategy related to perturbation results. Numerical experiments
are performed to test the algorithms.

Finally, we describe two subspace algorithms for computing extremal gen-
eralized singular values and vectors, that are also suitable for approximating
truncated generalized singular value decompositions. The first algorithm can be
seen as a restarted generalized Davidson algorithm, and the second algorithm
improves upon the first with multidirectional subspace expansion. This multidi-
rectional subspace expansion is also followed by a truncation step, although it
is slightly different from the previous one. Furthermore, we provide additional
insight into the multidirectional subspace expansion technique with several inter-
esting theoretical observations, and generalize numerous error bounds for the
symmetric eigenvalue problem to the generalized singular value problem.
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